Goals: Add links that are reasonable and good explanations of how stuff works. No hype and no vendor content if possible. Practical first-hand accounts of models in prod eagerly sought.

// ==UserScript== | |
// @name TweetXer | |
// @namespace https://github.com/lucahammer/tweetXer/ | |
// @version 0.9.3 | |
// @description Delete all your Tweets for free. | |
// @author Luca,dbort,pReya,Micolithe,STrRedWolf | |
// @license NoHarm-draft | |
// @match https://x.com/* | |
// @match https://mobile.x.com/* | |
// @match https://twitter.com/* |
import time | |
from contextlib import suppress | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torch.nn.functional as F | |
import torch.backends.cuda as cuda | |
from torch.utils.data import DataLoader, IterableDataset |
import functools | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as mpatches | |
import matplotlib.table as table | |
import numpy as np | |
import pandas as pd | |
from scipy.stats import spearmanr | |
TOURNAMENT_NAME = "kazutsugi" |
import mmh3 | |
import pandas as pd | |
def get_positive_hash(x): | |
s = " ".join(get_unique_tokens(x)) | |
return mmh3.hash(s) % 2**31 | |
df['group_id'] = df['query_string'].apply(get_positive_hash ) | |
query_groups = df.groupby("group_id") |
import keras | |
from keras.datasets import mnist | |
import numpy as np | |
from PIL import Image, ImageOps | |
import os | |
def save_image(filename, data_array): | |
im = Image.fromarray(data_array.astype('uint8')) | |
im_invert = ImageOps.invert(im) |