Goals: Add links that are reasonable and good explanations of how stuff works. No hype and no vendor content if possible. Practical first-hand accounts of models in prod eagerly sought.
| // ==UserScript== | |
| // @name TweetXer | |
| // @namespace https://github.com/lucahammer/tweetXer/ | |
| // @version 0.9.3 | |
| // @description Delete all your Tweets for free. | |
| // @author Luca,dbort,pReya,Micolithe,STrRedWolf | |
| // @license NoHarm-draft | |
| // @match https://x.com/* | |
| // @match https://mobile.x.com/* | |
| // @match https://twitter.com/* |
| import time | |
| from contextlib import suppress | |
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| import torch.nn.functional as F | |
| import torch.backends.cuda as cuda | |
| from torch.utils.data import DataLoader, IterableDataset |
| import functools | |
| import matplotlib.pyplot as plt | |
| import matplotlib.patches as mpatches | |
| import matplotlib.table as table | |
| import numpy as np | |
| import pandas as pd | |
| from scipy.stats import spearmanr | |
| TOURNAMENT_NAME = "kazutsugi" |
| import mmh3 | |
| import pandas as pd | |
| def get_positive_hash(x): | |
| s = " ".join(get_unique_tokens(x)) | |
| return mmh3.hash(s) % 2**31 | |
| df['group_id'] = df['query_string'].apply(get_positive_hash ) | |
| query_groups = df.groupby("group_id") |
| import keras | |
| from keras.datasets import mnist | |
| import numpy as np | |
| from PIL import Image, ImageOps | |
| import os | |
| def save_image(filename, data_array): | |
| im = Image.fromarray(data_array.astype('uint8')) | |
| im_invert = ImageOps.invert(im) |