Last active
November 23, 2019 14:51
-
-
Save parosky/7398239 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
import csv | |
import codecs | |
import numpy as np | |
import MeCab | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.cluster import KMeans, MiniBatchKMeans | |
from sklearn.decomposition import TruncatedSVD | |
from sklearn.preprocessing import Normalizer | |
FILENAME = 'tweets.csv' | |
NUM_CLUSTERS = 1000 | |
LSA_DIM = 500 | |
MAX_DF = 0.8 | |
MAX_FEATURES = 10000 | |
MINIBATCH = True | |
def get_tweets_from_csv(filename): | |
ret = csv.reader(open(filename)) | |
tweets = [r[7].decode('utf-8') for r in ret] | |
for tweet in tweets[:]: | |
if u'@' in tweet: | |
tweets.remove(tweet) | |
if len(tweet) <= 3: | |
tweets.remove(tweet) | |
return tweets | |
def analyzer(text): | |
ret = [] | |
tagger = MeCab.Tagger('-Ochasen') | |
node = tagger.parseToNode(text.encode('utf-8')) | |
node = node.next | |
while node.next: | |
ret.append(node.feature.split(',')[-3].decode('utf-8')) | |
node = node.next | |
return ret | |
def main(filename): | |
# load tweets | |
tweets = get_tweets_from_csv(filename) | |
# feature extraction | |
vectorizer = TfidfVectorizer(analyzer=analyzer, max_df=MAX_DF) | |
vectorizer.max_features = MAX_FEATURES | |
X = vectorizer.fit_transform(tweets) | |
# dimensionality reduction by LSA | |
lsa = TruncatedSVD(LSA_DIM) | |
X = lsa.fit_transform(X) | |
X = Normalizer(copy=False).fit_transform(X) | |
# clustering by KMeans | |
if MINIBATCH: | |
km = MiniBatchKMeans(n_clusters=NUM_CLUSTERS, init='k-means++', batch_size=1000, n_init=10, max_no_improvement=10, verbose=True) | |
else: | |
km = KMeans(n_clusters=NUM_CLUSTERS, init='k-means++', n_init=1, verbose=True) | |
km.fit(X) | |
labels = km.labels_ | |
transformed = km.transform(X) | |
dists = np.zeros(labels.shape) | |
for i in range(len(labels)): | |
dists[i] = transformed[i, labels[i]] | |
# sort by distance | |
clusters = [] | |
for i in range(NUM_CLUSTERS): | |
cluster = [] | |
ii = np.where(labels==i)[0] | |
dd = dists[ii] | |
di = np.vstack([dd,ii]).transpose().tolist() | |
di.sort() | |
for d, j in di: | |
cluster.append(tweets[int(j)]) | |
clusters.append(cluster) | |
return clusters | |
if __name__ == '__main__': | |
clusters = main(FILENAME) | |
f = codecs.open('%s.txt' % FILENAME, 'w', 'utf-8') | |
for i,tweets in enumerate(clusters): | |
for tweet in tweets: | |
f.write('%d: %s\n' % (i, tweet.replace('/n', ''))) | |
f.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment