Created
March 27, 2024 06:06
-
-
Save partrita/93a8076df96f37267de3c01c12295970 to your computer and use it in GitHub Desktop.
Simple matplotlib errorbar plot/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pandas as pd | |
| import matplotlib.pyplot as plt | |
| df = pd.read_csv("./data/230116_Tumor_regression.csv") | |
| # Group Mouse Day Tumor(mm2) | |
| # 0 G1 2210ES50_1 0 0.000000 | |
| # 1 G1 2210ES50_1 7 107.827200 | |
| # 2 G1 2210ES50_1 11 674.233875 | |
| # 3 G1 2210ES50_1 14 1573.768326 | |
| # 4 G1 2210ES50_1 18 3341.605256 | |
| # 5 G1 2210ES50_1 21 NaN | |
| # 6 G1 2210ES50_1 25 NaN | |
| # 7 G1 2210ES50_2 0 0.000000 | |
| # 8 G1 2210ES50_2 7 100.800000 | |
| # 9 G1 2210ES50_2 11 496.716748 | |
| # 10 G1 2210ES50_2 14 841.555000 | |
| # 11 G1 2210ES50_2 18 1405.689022 | |
| # 12 G1 2210ES50_2 21 2646.805230 | |
| # 13 G1 2210ES50_2 25 5637.610768 | |
| # 14 G1 2210ES50_3 0 0.000000 | |
| # 15 G1 2210ES50_3 7 107.681959 | |
| # 16 G1 2210ES50_3 11 500.273193 | |
| # 17 G1 2210ES50_3 14 1124.932500 | |
| # 18 G1 2210ES50_3 18 2096.455680 | |
| # 19 G1 2210ES50_3 21 3191.421303 | |
| # 20 G1 2210ES50_3 25 NaN | |
| # 21 G4 2210ES50_22 0 0.000000 | |
| # 22 G4 2210ES50_22 7 109.263302 | |
| # 23 G4 2210ES50_22 11 162.636750 | |
| # 24 G4 2210ES50_22 14 429.359329 | |
| # 25 G4 2210ES50_22 18 720.147825 | |
| # 26 G4 2210ES50_22 21 1906.932632 | |
| # 27 G4 2210ES50_22 25 3553.364896 | |
| # 28 G4 2210ES50_23 0 0.000000 | |
| # 29 G4 2210ES50_23 7 102.136645 | |
| # 30 G4 2210ES50_23 11 305.984322 | |
| # 31 G4 2210ES50_23 14 445.383615 | |
| # 32 G4 2210ES50_23 18 1233.813600 | |
| # 33 G4 2210ES50_23 21 1877.068432 | |
| # 34 G4 2210ES50_23 25 3941.033324 | |
| # 35 G4 2210ES50_24 0 0.000000 | |
| # 36 G4 2210ES50_25 7 116.458545 | |
| # 37 G4 2210ES50_26 11 218.484000 | |
| # 38 G4 2210ES50_27 14 299.380752 | |
| # 39 G4 2210ES50_28 18 1230.631529 | |
| # 40 G4 2210ES50_29 21 2177.525467 | |
| # 41 G4 2210ES50_30 25 3898.437944 | |
| df_pivot = pd.pivot_table( | |
| df, | |
| index=["Group", "Day"], | |
| # columns = 'Day', | |
| values="Tumor(mm2)", | |
| aggfunc=[np.mean, np.std], | |
| ) | |
| x = df_pivot.loc["G1"].index | |
| y1 = df_pivot.loc["G1", "mean"].values.flatten() | |
| y2 = df_pivot.loc["G4", "mean"].values.flatten() | |
| yerr1 = df_pivot.loc["G1", "std"].values.flatten() | |
| yerr2 = df_pivot.loc["G4", "std"].values.flatten() | |
| # np.nan_to_num(yerr, copy=False) | |
| plt.errorbar(x, y1, yerr=yerr1, fmt="o-", capsize=3.0, ecolor="k") | |
| plt.errorbar(x, y2, yerr=yerr2, fmt="o-", capsize=3.0, ecolor="k") | |
| plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment