Last active
April 6, 2020 22:29
-
-
Save parulagg27/f3e7c91368b78d9c481e35e72f5aa548 to your computer and use it in GitHub Desktop.
Holidays Parser
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from selenium import webdriver | |
from selenium.webdriver.support.ui import Select | |
from selenium.webdriver.support.ui import WebDriverWait | |
from selenium.webdriver.firefox.options import Options | |
from bs4 import BeautifulSoup | |
import numpy as np | |
import pandas as pd | |
import sys | |
def parse_holidays(given_year, driver, final_list): | |
month_map = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] | |
for label in month_map: | |
month = Select(driver.find_element_by_id("drMonth")) | |
month.select_by_visible_text(label) | |
year = Select(driver.find_element_by_id("drYear")) | |
year.select_by_visible_text(given_year) | |
regional_office = Select(driver.find_element_by_name("drRegionalOffice")) | |
regional_office.select_by_value("0") | |
search_button = driver.find_element_by_id("btnGo") | |
search_button.click() | |
soup = BeautifulSoup(driver.page_source, 'html.parser') | |
table = soup.find_all('table')[0].find_all('tr') | |
final_list.append(find_common_holidays(table=table)) | |
itemDict = {item[0]: item[1:] for item in final_list} | |
print (itemDict) | |
def find_common_holidays(table): | |
holiday_list = [] | |
for tr in table: | |
""" | |
Logic for reading the text from parsed holidays table row wise and generates a separate | |
list for entries in each row, i.e., for each state in table and finally creates a single | |
list for this list. | |
""" | |
cell = [] | |
for td in tr('td'): | |
text = td(text=True) | |
cell.append(''.join(text)) | |
holiday_list.append(cell) | |
df = pd.DataFrame(holiday_list) | |
# removes default headers from dataframe produced and uses first row,i.e., list containing holiday dates as headers | |
new_header = df.iloc[0] | |
df = df[1:] # take the data less the header row | |
df.columns = new_header | |
# replaces blank space entries in table with NaN | |
df.replace(u'\xa0', np.nan, inplace=True) | |
dates = [] | |
for columns in df: | |
""" | |
Logic for finding those column headers in table with no NaN value in any of it's cell. | |
It first iterates over each column header of table, checks if null value is present in | |
any of it's cells and appends empty list with only those headers having now NaN cell values. | |
""" | |
if not df[columns].isnull().any(): | |
dates.append(str(columns)) | |
return dates | |
given_year = sys.argv[1] | |
def run(given_year): | |
options = Options() | |
options.headless = True | |
driver = webdriver.Firefox(options=options) | |
driver.get("https://rbi.org.in/Scripts/HolidayMatrixDisplay.aspx") | |
final_list = [] | |
parse_holidays(given_year=given_year, driver=driver, final_list=final_list) | |
driver.close() | |
run(given_year) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
beautifulsoup4==4.7.1 | |
numpy==1.16.4 | |
pandas==0.24.2 | |
selenium==3.141.0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment