Skip to content

Instantly share code, notes, and snippets.

@parulnith
Last active November 1, 2023 09:12
Show Gist options
  • Save parulnith/7f8c174e6ac099e86f0495d3d9a4c01e to your computer and use it in GitHub Desktop.
Save parulnith/7f8c174e6ac099e86f0495d3d9a4c01e to your computer and use it in GitHub Desktop.
Untitled9.ipynb
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@SonamSangpoLama
Copy link

SonamSangpoLama commented May 6, 2020

I have just been trying to use the same code of above but I am getting error. I have just made tiny changes on file directory.

Extracting spec from audios
cmap = plt.get_cmap('inferno')
plt.figure(figsize=(10,10))
genres = 'blues classical country disco hiphop jazz metal pop reggae rock'.split()
for g in genres:
pathlib.Path(f'image_genres/{g}').mkdir(parents=True, exist_ok=True)
for filename in os.listdir(f'./genres/{g}'):
songname = f'./genres/{g}/{filename}'
y, sr = librosa.load(songname, mono=True, duration=5)
plt.specgram(y, NFFT=2048, Fs=2, Fc=0, noverlap=128, cmap=cmap, sides='default', mode='default', scale='dB');
plt.axis('off');
plt.savefig(f'image_genres/{g}/{filename[:-3].replace(".", "")}.png')
plt.clf()

extracting features from spect

header = 'filename chroma_stft rmse spectral_centroid spectral_bandwidth rolloff zero_crossing_rate'
for i in range(1, 21):
header += f' mfcc{i}'
header += ' label'
header = header.split()

writing to csv

file = open('data.csv', 'w', newline='')
with file:
writer = csv.writer(file)
writer.writerow(header)
genres = 'blues classical country disco hiphop jazz metal pop reggae rock'.split()
for g in genres:
for filename in os.listdir(f'./genres/{g}'):
songname = f'./genres/{g}/{filename}'
y, sr = librosa.load(songname, mono=True, duration=30)
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
spec_cent = librosa.feature.spectral_centroid(y=y, sr=sr)
spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
zcr = librosa.feature.zero_crossing_rate(y)
mfcc = librosa.feature.mfcc(y=y, sr=sr)
to_append = f'{filename} {np.mean(chroma_stft)} {np.mean(spec_cent)} {np.mean(spec_bw)} {np.mean(rolloff)} {np.mean(zcr)}'
for e in mfcc:
to_append += f' {np.mean(e)}'
to_append += f' {g}'
file = open('data.csv', 'a', newline='')
with file:
writer = csv.writer(file)
writer.writerow(to_append.split())

reading csv

data = pd.read_csv('data.csv')
data.head()

standard scaler

scaler = StandardScaler()
X = scaler.fit_transform(np.array(data.iloc[:, :1], dtype = float))

@Dhruv28112000
Copy link

What was the use of spectrogram images???

@jkotra
Copy link

jkotra commented Oct 31, 2020

I wrote a easy to understand notebook based on FE ideas in this one:
https://github.com/jkotra/MusicGenreClassification/blob/master/MusicGenreClassification_FeatureEnsemble.ipynb

Take a look if this seems too complicated 😉

@zebrapol
Copy link

zebrapol commented Jan 7, 2022

Hello @ndujar.
Could you please describe in more detail how to me predictions, namely the arrays that are displayed during prediction, turn into genres. I will be very grateful!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment