Created
December 20, 2013 21:38
-
-
Save pasali/8062057 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import java.math.BigInteger; | |
import java.util.Random; | |
public class MillerRabin { | |
public static final BigInteger ZERO = BigInteger.ZERO; | |
public static final BigInteger ONE = BigInteger.ONE; | |
public static final BigInteger TWO = BigInteger.valueOf(2); | |
public static final int[] aValues = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, | |
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, | |
103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, | |
173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, | |
241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, | |
317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, | |
401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, | |
479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, | |
571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, | |
647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, | |
739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, | |
827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, | |
919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, | |
1013, 1019, 1021 }; | |
public static boolean testPr(BigInteger n, BigInteger a, int s, BigInteger d) { | |
for (int i = 0; i < s; i++) { | |
BigInteger exp = TWO.pow(i); | |
exp = exp.multiply(d); | |
BigInteger res = a.modPow(exp, n); | |
if (res.equals(n.subtract(ONE)) || res.equals(ONE)) { | |
return true; | |
} | |
} | |
return false; | |
} | |
public static boolean millerRabin(BigInteger n, int numValues) { | |
BigInteger d = n.subtract(ONE); | |
int s = 0; | |
while (d.mod(TWO).equals(ZERO)) { | |
s++; | |
d = d.divide(TWO); | |
} | |
System.out.print("Base "); | |
for (int i = 0; i < numValues; i++) { | |
BigInteger a = BigInteger.valueOf(aValues[i]); | |
boolean r = testPr(n, a, s, d); | |
System.out.print(aValues[i] + " \n"); | |
if (!r) { | |
return false; | |
} | |
} | |
return true; | |
} | |
public static void main(String[] args) { | |
long a = new Random().nextInt(999999999); | |
System.out.println(millerRabin(BigInteger.valueOf((a)), | |
aValues.length)); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment