Created
July 8, 2020 20:06
-
-
Save pascalwhoop/ea3bf6641b239f8605c210b9f88179f1 to your computer and use it in GitHub Desktop.
sample pipeline for data cleaning
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import apache_beam as beam | |
import logging | |
import json | |
from apache_beam.io import ReadFromText | |
from apache_beam.io import BigQuerySource | |
from apache_beam.io import BigQuerySink | |
from apache_beam.io import WriteToText | |
from apache_beam.io.gcp.bigquery_tools import parse_table_schema_from_json | |
from apache_beam.io.gcp.internal.clients import bigquery | |
from apache_beam.options.pipeline_options import PipelineOptions | |
from apache_beam.options.pipeline_options import GoogleCloudOptions | |
from apache_beam.options.pipeline_options import StandardOptions | |
options = PipelineOptions() | |
logging.getLogger().setLevel(logging.INFO) | |
google_cloud_options = options.view_as(GoogleCloudOptions) | |
google_cloud_options.project = "pascalwhoop" | |
google_cloud_options.job_name = "phone-sensors-cleanup" | |
google_cloud_options.staging_location = "gs://pascalwhoop-private/staging" | |
google_cloud_options.temp_location = "gs://pascalwhoop-private/temp" | |
#options.view_as(StandardOptions).runner = "DirectRunner" # use this for debugging | |
options.view_as(StandardOptions).runner = "DataFlowRunner" | |
# see here for bigquery docs https://beam.apache.org/documentation/io/built-in/google-bigquery/ | |
source_table_spec = bigquery.TableReference( | |
projectId="pascalwhoop", datasetId="phone_sensors", tableId="heartbeat" | |
) | |
sink_table_spec = bigquery.TableReference( | |
projectId="pascalwhoop", datasetId="phone_sensors", tableId="heartbeat_cleaned" | |
) | |
def make_sink_schema(): | |
mapping = { | |
"altitude": "FLOAT", | |
"battery_status": "INTEGER", | |
"bluetooth_status": "STRING", | |
"cell_id": "STRING", | |
"cell_strength": "INTEGER", | |
"gps_status": "STRING", | |
"last_app": "STRING", | |
"location_accuracy": "FLOAT", | |
"location_gps": "STRING", | |
"location_net": "STRING", | |
"location_seconds": "STRING", | |
"speed": "FLOAT", | |
"timestamp": "INTEGER" | |
} | |
mapping_list = [{"mode": "NULLABLE", "name": k, "type": mapping[k]} for k in mapping.keys()] | |
return json.JSONEncoder(sort_keys=True).encode({"fields": mapping_list}) | |
table_schema = parse_table_schema_from_json(make_sink_schema()) | |
#source = BigQuerySource(query="SELECT * FROM `pascalwhoop.phone_sensors.heartbeat` LIMIT 10", use_standard_sql=True) # you can also use SQL queries | |
source = BigQuerySource(source_table_spec) | |
target = BigQuerySink(sink_table_spec, schema=table_schema) | |
#target = beam.io.WriteToText("output.txt") | |
def run(): | |
with beam.Pipeline(options=options) as p: | |
raw_values = ( | |
p | |
| "ReadTable" >> beam.io.Read(source) | |
| "cleanup" >> beam.ParDo(ElementCleanup()) | |
| "writeTable" >> beam.io.Write(target) | |
) | |
# pipeline | |
# parDo for all values in PCollection: process | |
# each element: define a target datatype and a set of cleanup functions for each | |
class ElementCleanup(beam.DoFn): | |
""" | |
tasker uses the %VAR_NAME syntax to construct JSON. Sometimes, values aren't replaced. In these cases, the string starts with a "%". If this is the case, simply replace it with a None | |
""" | |
def __init__(self): | |
self.transforms = self.make_transform_map() | |
def make_transform_map(self): | |
return { | |
"battery_status": [self.trim, self.percent_cleaner, self.to_int], | |
"bluetooth_status": [self.trim, self.percent_cleaner, ], | |
"cell_id": [self.trim, self.percent_cleaner, ], | |
"cell_strength": [self.trim, self.percent_cleaner, self.to_int], | |
"gps_status": [self.trim, self.percent_cleaner, ], | |
"last_app": [self.trim, self.percent_cleaner, ], | |
"location_gps": [self.trim, self.percent_cleaner, ], #keeping encoding as "LAT,LON" as data studio likes this | |
"location_net": [self.trim, self.percent_cleaner, ], #keeping encoding as "LAT,LON" as data studio likes this | |
"location_accuracy": [self.trim, self.percent_cleaner, self.to_float], | |
"altitude": [self.trim, self.percent_cleaner, self.to_float], | |
"speed": [self.trim, self.percent_cleaner, self.to_float], | |
"location_seconds": [self.trim, self.percent_cleaner, ], | |
"timestamp": [self.trim, self.percent_cleaner, self.to_int], | |
} | |
def process(self, row): | |
#process receives the object and (must) return an iterable (in case of breaking objects up into several) | |
return [self.handle_row(row, self.transforms)] | |
def handle_row(self, row, transforms): | |
fixed = {} | |
for key in row.keys(): | |
val = row[key] | |
for func in transforms[key]: | |
val = func(val) | |
fixed[key] = val | |
return fixed | |
def percent_cleaner(self, value: str): | |
if isinstance(value, str) and value.startswith("%"): | |
return None | |
else: | |
return value | |
def trim(self, val:str): | |
return val.strip() | |
def to_int(self, val: str): | |
return (int(val) if val != None else None) | |
def to_float(self, val: str): | |
return (float(val) if val != None else None) | |
if __name__ == "__main__": | |
run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment