๐
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
.text | |
.intel_syntax noprefix | |
.file "broadcast_dispatch_0" | |
.section .text.broadcast_dispatch_0_generic_Dx8640x3200_f16,"ax",@progbits | |
.p2align 4, 0x90 | |
.type broadcast_dispatch_0_generic_Dx8640x3200_f16,@function | |
broadcast_dispatch_0_generic_Dx8640x3200_f16: | |
.Lfunc_begin0: | |
.file 1 "-" | |
.loc 1 1 0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
def fma(a, b, c): | |
return a * b + c | |
def asin_core(a): | |
s = a * a | |
q = s * s | |
r = 5.5579749017470502e-2 | |
t = -6.2027913464120114e-2 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map = affine_map<(d0, d1, d2) -> (d1, d2)> | |
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | |
module @module { | |
util.global private @__auto.token_embd.weight = #stream.parameter.named<"model"::"token_embd.weight"> : tensor<128256x4096xf16> | |
util.global private @__auto.blk.0.attn_norm.weight = #stream.parameter.named<"model"::"blk.0.attn_norm.weight"> : tensor<4096xf32> | |
util.global private @__auto.blk.0.attn_q.weight = #stream.parameter.named<"model"::"blk.0.attn_q.weight"> : tensor<4096x4096xf16> | |
util.global private @__auto.blk.0.attn_k.weight = #stream.parameter.named<"model"::"blk.0.attn_k.weight"> : tensor<1024x4096xf16> | |
util.global private @__auto.blk.0.attn_v.weight = #stream.parameter.named<"model"::"blk.0.attn_v.weight"> : tensor<1024x4096xf16> | |
util.global private @__auto.constant_8192_64_torch.complex64 = dense_resource<__auto.constant_8192_64_torch.complex64> : tensor<8192x64xcomplex<f32>> | |
util.global private @__auto.blk.0.attn_output.weight = #stream.parameter.named<"model"::"blk.0.attn_o |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @decode_bs4(%arg0: !torch.vtensor<[4,?],si64>, %arg1: !torch.vtensor<[128256,4096],f16>) -> !torch.vtensor<[4,?,4096],f32> { | |
%false = torch.constant.bool false | |
%false_0 = torch.constant.bool false | |
%int-1 = torch.constant.int -1 | |
%int6 = torch.constant.int 6 | |
%0 = torch.prims.convert_element_type %arg1, %int6 : !torch.vtensor<[128256,4096],f16>, !torch.int -> !torch.vtensor<[128256,4096],f32> | |
%1 = torch.aten.embedding %0, %arg0, %int-1, %false_0, %false : !torch.vtensor<[128256,4096],f32>, !torch.vtensor<[4,?],si64>, !torch.int, !torch.bool, !torch.bool -> !torch.vtensor<[4,?,4096],f32> | |
return %1 : !torch.vtensor<[4,?,4096],f32> | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
def fma(a, b, c): | |
return a * b + c | |
def asin_core(a): | |
s = a * a | |
q = s * s | |
r = 5.5579749017470502e-2 | |
t = -6.2027913464120114e-2 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[-1.0, -0.9591836734693877, -0.9183673469387755, -0.8775510204081632, -0.8367346938775511, -0.7959183673469388, -0.7551020408163265, -0.7142857142857143, -0.6734693877551021, -0.6326530612244898, -0.5918367346938775, -0.5510204081632653, -0.5102040816326531, -0.4693877551020408, -0.4285714285714286, -0.3877551020408163, -0.34693877551020413, -0.30612244897959184, -0.26530612244897955, -0.22448979591836737, -0.18367346938775508, -0.1428571428571429, -0.10204081632653061, -0.061224489795918324, -0.020408163265306145, 0.020408163265306145, 0.061224489795918435, 0.1020408163265305, 0.1428571428571428, 0.18367346938775508, 0.22448979591836737, 0.26530612244897966, 0.30612244897959173, 0.346938775510204, 0.3877551020408163, 0.4285714285714286, 0.4693877551020409, 0.510204081632653, 0.5510204081632653, 0.5918367346938775, 0.6326530612244898, 0.6734693877551021, 0.7142857142857142, 0.7551020408163265, 0.7959183673469388, 0.8367346938775511, 0.8775510204081634, 0.9183673469387754, 0.9591836734693877, 1.0] | |
Actual: 3.14 |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After AssignTargetDevicesPass (iree-hal-assign-target-devices) //----- // | |
#executable_target_embedded_elf_x86_64_ = #hal.executable.target<"llvm-cpu", "embedded-elf-x86_64", {cpu = "generic", cpu_features = "", data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", native_vector_size = 16 : i64, target_triple = "x86_64-unknown-unknown-eabi-elf"}> | |
#device_target_local = #hal.device.target<"local", [#executable_target_embedded_elf_x86_64_]> | |
module attributes {hal.device.targets = [#device_target_local]} { | |
func.func @torch.prims.convert_element_type$fold(%arg0: !torch.vtensor<[4,?,32,100],f32>, %arg1: !torch.vtensor<[4,?],si64>) -> !torch.vtensor<[4,?,32,50,2],f32> { | |
%int4 = torch.constant.int 4 | |
%int32 = torch.constant.int 32 | |
%int-1 = torch.constant.int -1 | |
%int2 = torch.constant.int 2 | |
%int1 = torch.constant.int 1 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @torch_add(%arg0: !torch.vtensor<[1,1,?,?],i1>, %arg1: !torch.vtensor<[4,1,1,?],i1>) -> !torch.vtensor<[4, 1, ?, ?],i1> { | |
%int1 = torch.constant.int 1 | |
%2 = torch.aten.add.Tensor %arg0, %arg1, %int1 : !torch.vtensor<[1,1,?,?],i1>, !torch.vtensor<[4,1,1,?],i1>, !torch.int -> !torch.vtensor<[4,1,?,?],i1> | |
return %2 : !torch.vtensor<[4,1,?,?],i1> | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import re | |
parser = argparse.ArgumentParser(description='Convert parameter data type') | |
parser.add_argument('mlir', type=str, help='MLIR file where all parameters are mentioned') | |
parser.add_argument('dtype', type=str, help='Required data type of parameters') | |
parser.add_argument('irpa', type=str, help='destination irpa file') | |
args = parser.parse_args() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @img2col(%arg0: tensor<128x1026x1026xf32>) -> tensor<128x3x3x1024x1024xbf16> { | |
%0 = tensor.empty() : tensor<128x3x3x1024x1024xbf16> | |
%c1 = arith.constant 1 : index | |
%c0 = arith.constant 0 : index | |
%cst = arith.constant 0.000000e+00 : f32 | |
%c128 = arith.constant 128 : index | |
%c1024 = arith.constant 1024 : index | |
%1 = scf.for %arg1 = %c0 to %c128 step %c1 iter_args(%arg2 = %0) -> (tensor<128x3x3x1024x1024xbf16>) { | |
%2 = scf.for %arg3 = %c0 to %c1024 step %c1 iter_args(%arg4 = %arg2) -> (tensor<128x3x3x1024x1024xbf16>) { | |
%3 = scf.for %arg5 = %c0 to %c1024 step %c1 iter_args(%arg6 = %arg4) -> (tensor<128x3x3x1024x1024xbf16>) { |