This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After AutoInputConversionPipelinePass (iree-auto-input-conversion) //----- // | |
module { | |
func.func @matmul_2048x512x1024_f32_f32() -> tensor<2048x512xf32> { | |
%0 = util.unfoldable_constant dense<1.000000e+00> : tensor<2048x1024xf32> | |
%1 = util.unfoldable_constant dense<4.000000e-01> : tensor<1024x512xf32> | |
%cst = arith.constant 0.000000e+00 : f32 | |
%2 = tensor.empty() : tensor<2048x512xf32> | |
%3 = linalg.fill ins(%cst : f32) outs(%2 : tensor<2048x512xf32>) -> tensor<2048x512xf32> | |
%4 = linalg.matmul ins(%0, %1 : tensor<2048x1024xf32>, tensor<1024x512xf32>) outs(%3 : tensor<2048x512xf32>) -> tensor<2048x512xf32> | |
return %4 : tensor<2048x512xf32> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
==2213870==ERROR: AddressSanitizer: heap-use-after-free on address 0x50e000021d2c at pc 0x7b499bfdc2d7 bp 0x7fff58a95a70 sp 0x7fff58a95a68 | |
READ of size 4 at 0x50e000021d2c thread T0 | |
#0 0x7b499bfdc2d6 in mlir::Operation::getRegions() /home/nod/iree/third_party/llvm-project/mlir/include/mlir/IR/Operation.h:674:9 | |
#1 0x7b499bfdc2d6 in mlir::ForwardIterator::makeIterable(mlir::Operation&) /home/nod/iree/third_party/llvm-project/mlir/lib/IR/Visitors.cpp:18:16 | |
#2 0x7b499bd783f1 in void mlir::detail::walk<mlir::ForwardIterator>(mlir::Operation*, llvm::function_ref<void (mlir::Operation*)>, mlir::WalkOrder) /home/nod/iree/third_party/llvm-project/mlir/include/mlir/IR/Visitors.h:176:23 | |
#3 0x7b49a160111e in std::enable_if<!llvm::is_one_of<mlir::gpu::ThreadIdOp, mlir::Operation*, mlir::Region*, mlir::Block*>::value && std::is_same<void, void>::value, void>::type mlir::detail::walk<(mlir::WalkOrder)1, mlir::ForwardIterator, void replaceUnitMappingIdsHelper<mlir::gpu::ThreadIdOp, mlir::Operation>(mlir::Rewr |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After GPUGeneralizeNamedOpsPass (iree-codegen-gpu-generalize-named-ops) //----- // | |
func.func @dot_dispatch_0() { | |
%cst = arith.constant 0.000000e+00 : f32 | |
%c0 = arith.constant 0 : index | |
%c1024 = arith.constant 1024 : index | |
%c1 = arith.constant 1 : index | |
%0 = hal.interface.binding.subspan layout(<bindings = [#hal.pipeline.binding<storage_buffer>, #hal.pipeline.binding<storage_buffer>, #hal.pipeline.binding<storage_buffer>]>) binding(0) : !flow.dispatch.tensor<readonly:tensor<1024x1024xf32>> | |
%1 = hal.interface.binding.subspan layout(<bindings = [#hal.pipeline.binding<storage_buffer>, #hal.pipeline.binding<storage_buffer>, #hal.pipeline.binding<storage_buffer>]>) binding(1) : !flow.dispatch.tensor<readonly:tensor<1024x1024xf32>> | |
%2 = hal.interface.binding.subspan layout(<bindings = [#hal.pipeline.binding<storage_buffer>, #hal.pipeline.binding<storage_buffer>, #hal.pipeline.binding<storage_buffer>]>) binding(2) : !flow.dispatch.tensor<writeonly:tensor<1024x1024xf32>> | |
%3 = flow.di |
This file has been truncated, but you can view the full file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After AutoInputConversionPipelinePass (iree-auto-input-conversion) //----- // | |
#executable_target_embedded_elf_x86_64_ = #hal.executable.target<"llvm-cpu", "embedded-elf-x86_64", {cpu_features = "+avx512f", data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128", native_vector_size = 16 : index, target_triple = "x86_64-none-elf"}> | |
#translation = #iree_codegen.translation_info<CPUDefault> | |
module { | |
func.func @quantized_matmul_neither_zp_0_dynamic(%arg0: tensor<256x256xi8>, %arg1: tensor<256x256xi8>, %arg2: i32, %arg3: i32, %arg4: tensor<256x256xi32>) -> tensor<256x256xi32> attributes {hal.executable.target = #executable_target_embedded_elf_x86_64_, translation_info = #translation} { | |
%0 = linalg.quantized_matmul ins(%arg0, %arg1, %arg2, %arg3 : tensor<256x256xi8>, tensor<256x256xi8>, i32, i32) outs(%arg4 : tensor<256x256xi32>) -> tensor<256x256xi32> | |
return %0 : tensor<256x256xi32> | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<unknown>:0: error: invalid size -9223372036854775808 for !torch.tensor type | |
iree-compile: iree/third_party/llvm-project/mlir/include/mlir/IR/StorageUniquerSupport.h:180: static ConcreteT mlir::detail::StorageUserBase<mlir::torch::Torch::ValueTensorType, mlir::torch::Torch::BaseTensorType, mlir::torch::Torch::detail::ValueTensorTypeStorage, mlir::detail::TypeUniquer>::get(MLIRContext *, Args &&...) [ConcreteT = mlir::torch::Torch::ValueTensorType, BaseT = mlir::torch::Torch::BaseTensorType, StorageT = mlir::torch::Torch::detail::ValueTensorTypeStorage, UniquerT = mlir::detail::TypeUniquer, Traits = <>, Args = <std::optional<llvm::ArrayRef<long>> &, mlir::Type &, mlir::Attribute &>]: Assertion `succeeded( ConcreteT::verifyInvariants(getDefaultDiagnosticEmitFn(ctx), args...))' failed. | |
Please report issues to https://github.com/iree-org/iree/issues and include the crash backtrace. | |
Stack dump: | |
0. Program arguments: iree-compile --iree-hal-target-backends=llvm-cpu new_onnx.mlir -o abc.vmfb --iree-llvmcpu-target-cp |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#pipeline_layout = #hal.pipeline.layout<constants = 4, bindings = [ | |
#hal.pipeline.binding<storage_buffer> | |
]> | |
hal.executable.source public @executable { | |
hal.executable.export public @write_constants ordinal(0) layout(#pipeline_layout) attributes {workgroup_size = [1 : index, 1 : index, 1 : index]} { | |
^bb0(%arg0: !hal.device): | |
%c1 = arith.constant 1 : index | |
hal.return %c1, %c1, %c1 : index, index, index | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After ConvertTorchOnnxToTorch (convert-torch-onnx-to-torch) //----- // | |
func.func @torch_jit(%arg0: !torch.vtensor<[1,64,88,88],f32>) -> !torch.vtensor<[?,256,88,88],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 21 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "1.12.1"} { | |
%0 = torch.vtensor.literal(dense<[[[-0.162511453, 0.196854442, -0.89627254, 0.699266493, 0.930536746]]]> : tensor<1x1x5xf32>) : !torch.vtensor<[1,1,5],f32> | |
%1 = torch.vtensor.literal(dense<0.000000e+00> : tensor<256x64x1x1xf32>) : !torch.vtensor<[256,64,1,1],f32> | |
%2 = torch.vtensor.literal(dense<"0x4684C23E7C2E86BF686622BF042F8D3F2FF0803E7CC5683F8810C9BFB750363FCE7E0DC07BCD63C0878B86BF633820BF449DBA3F88D3B0BE83C9FA3FF5A6ECBF078D44401E80D2BE524F17C01BB8823DE069453DA60F85404569F3BD599F823F0DFAA1C0CD896EBF3C98434084EF7C408067A63E4088613EAE5AA93E22BF5D3F50D6083E75EE51BF00E69BBF478287403E5C6E3FB6B11340D392C4BE4C439B3E3A22B13FCC3B4F3F34F554BD6 |
This file has been truncated, but you can view the full file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After ConvertTorchOnnxToTorch (convert-torch-onnx-to-torch) //----- // | |
func.func @main_graph(%arg0: !torch.vtensor<[?,?],si64>, %arg1: !torch.vtensor<[?,?],si64>, %arg2: !torch.vtensor<[?,?],si64>, %arg3: !torch.vtensor<[?,?,?],si64>, %arg4: !torch.vtensor<[4],si64>, %arg5: !torch.vtensor<[2],si64>) -> !torch.vtensor<[?,?,128,384],i1> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 21 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "2.4.0"} { | |
%0 = torch.vtensor.literal(dense<0> : tensor<si64>) : !torch.vtensor<[],si64> | |
%int0 = torch.constant.int 0 | |
%int0_0 = torch.constant.int 0 | |
%1 = torch.aten.select.int %arg4, %int0, %int0_0 : !torch.vtensor<[4],si64>, !torch.int, !torch.int -> !torch.vtensor<[],si64> | |
%2 = torch.aten.item %1 : !torch.vtensor<[],si64> -> !torch.int | |
%int1 = torch.constant.int 1 | |
%3 = torch.aten.select.int %arg4, %int0, %int1 : !torch.vtensor<[4],si64>, !torch.int, !torch.int -> !torch.vtens |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module { | |
func.func @main_graph(%arg0: !torch.vtensor<[?,?],si64>, %arg1: !torch.vtensor<[?,?],si64>, %arg2: !torch.vtensor<[?,?],si64>, %arg3: !torch.vtensor<[?,?,?],si64>, %arg4: !torch.vtensor<[4],si64>, %arg5: !torch.vtensor<[2],si64>) -> !torch.vtensor<[?,?,128,384],i1> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 21 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "2.4.0"} { | |
%1 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<si64>} : () -> !torch.vtensor<[],si64> | |
%2 = torch.operator "onnx.Pad"(%arg1, %arg4, %1) {torch.onnx.mode = "constant"} : (!torch.vtensor<[?,?],si64>, !torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[?,?],si64> | |
%3 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<1> : tensor<si64>} : () -> !torch.vtensor<[],si64> | |
%4 = torch.operator "onnx.Gather"(%arg5, %3) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[2],si64>, !torch.vtensor<[],si6 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
hal.executable public @main_graph$async_dispatch_3 { | |
hal.executable.variant public @embedded_elf_x86_64 target(<"llvm-cpu", "embedded-elf-x86_64", {cpu = "znver4", cpu_features = "+prfchw,-cldemote,+avx,+aes,+sahf,+pclmul,-xop,+crc32,+xsaves,-avx512fp16,-usermsr,-sm4,-egpr,+sse4.1,+avx512ifma,+xsave,+sse4.2,-tsxldtrk,-sm3,-ptwrite,-widekl,+invpcid,+64bit,+xsavec,-avx10.1-512,+avx512vpopcntdq,+cmov,-avx512vp2intersect,+avx512cd,+movbe,-avxvnniint8,-ccmp,-amx-int8,-kl,-avx10.1-256,+evex512,-avxvnni,-rtm,+adx,+avx2,-hreset,-movdiri,-serialize,-sha512,+vpclmulqdq,+avx512vl,-uintr,-cf,+clflushopt,-raoint,-cmpccxadd,+bmi,-amx-tile,+sse,-avx10.2-256,+gfni,-avxvnniint16,-amx-fp16,-zu,-ndd,+xsaveopt,+rdrnd,+avx512f,-amx-bf16,+avx512bf16,+avx512vnni,-push2pop2,+cx8,+avx512bw,+sse3,+pku,-nf,+fsgsbase,+clzero,+mwaitx,-lwp,+lzcnt,+sha,-movdir64b,-ppx,+wbnoinvd,-enqcmd,-avx10.2-512,-avxneconvert,-tbm,-pconfig,-amx-complex,+ssse3,+cx16,+bmi2,+fma,+popcnt,-avxifma,+f16c,+avx512bitalg,+rdpru,+clwb,+mmx,+sse2,+rdseed,+avx512 |
NewerOlder