Created
June 17, 2025 08:05
-
-
Save pashu123/74778fcd0526039861913d503e5b8e84 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
hal.executable public @prefill_bs4$async_dispatch_3 { | |
hal.executable.variant public @rocm_hsaco_fb target(<"rocm", "rocm-hsaco-fb", {abi = "hip", iree.gpu.target = #iree_gpu.target<arch = "gfx942", features = "", wgp = <compute = fp64|fp32|fp16|int64|int32|int16|int8, storage = b64|b32|b16|b8, subgroup = shuffle|arithmetic, dot = dp4xi8toi32, mma = [<MFMA_F32_16x16x16_BF16>, <MFMA_F32_32x32x8_BF16>, <MFMA_F32_16x16x32_F8E5M2FNUZ>, <MFMA_F32_16x16x32_F8E5M2FNUZ_F8E4M3FNUZ>, <MFMA_F32_16x16x32_F8E4M3FNUZ>, <MFMA_F32_16x16x32_F8E4M3FNUZ_F8E5M2FNUZ>, <MFMA_F32_32x32x16_F8E5M2FNUZ>, <MFMA_F32_32x32x16_F8E5M2FNUZ_F8E4M3FNUZ>, <MFMA_F32_32x32x16_F8E4M3FNUZ>, <MFMA_F32_32x32x16_F8E4M3FNUZ_F8E5M2FNUZ>, <MFMA_I32_16x16x32_I8>, <MFMA_I32_32x32x16_I8>, <MFMA_F64_16x16x4_F64>, <MFMA_F32_16x16x4_F32>, <MFMA_F32_16x16x16_F16>, <MFMA_F32_32x32x8_F16>], subgroup_size_choices = [64], max_workgroup_sizes = [1024, 1024, 1024], max_thread_count_per_workgroup = 1024, max_workgroup_memory_bytes = 65536, max_workgroup_counts = [2147483647, 2147483647, 2147483647], max_load_instruction_bits = 128, simds_per_wgp = 4, vgpr_space_bits = 16384>>, iree_codegen.default_tuning_spec = #rocm.builtin.tuning_module<"iree_default_tuning_spec_gfx942.mlir">, ukernels = "none"}>) { | |
hal.executable.export public @prefill_bs4$async_dispatch_3_softmax_4x128256xf32_generic ordinal(0) layout(#hal.pipeline.layout<constants = 2, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) count(%arg0: !hal.device, %arg1: index) -> (index, index, index) { | |
%x, %y, %z = iree_tensor_ext.dispatch.workgroup_count_from_slice %arg1 | |
hal.return %x, %y, %z : index, index, index | |
} | |
builtin.module { | |
func.func @prefill_bs4$async_dispatch_3_softmax_4x128256xf32_generic() { | |
%c1_i64 = arith.constant 1 : i64 | |
%c0_i64 = arith.constant 0 : i64 | |
%c4_i64 = arith.constant 4 : i64 | |
%cst = arith.constant dense_resource<torch_tensor_4_torch.int64> : tensor<4xi64> | |
%c0 = arith.constant 0 : index | |
%0 = hal.interface.constant.load layout(<constants = 2, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(0) : i32 | |
%1 = hal.interface.constant.load layout(<constants = 2, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) ordinal(1) : i32 | |
%2 = arith.index_castui %0 : i32 to index | |
%3 = arith.index_castui %1 : i32 to index | |
%4:2 = util.assume.int | |
%2<umin = 5224448, umax = 537901056>, | |
%3<umin = 32, umax = 8160, udiv = 32> | |
: index, index | |
%5 = hal.interface.binding.subspan layout(<constants = 2, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(1) alignment(64) offset(%c0) flags("ReadOnly|Indirect") : !iree_tensor_ext.dispatch.tensor<readonly:tensor<4xi64>> | |
%6 = hal.interface.binding.subspan layout(<constants = 2, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(2) alignment(64) offset(%c0) flags(Indirect) : !iree_tensor_ext.dispatch.tensor<writeonly:tensor<4x128256xf16>> | |
%7 = iree_tensor_ext.dispatch.workload.ordinal %4#1, 0 : index | |
%8 = hal.interface.binding.subspan layout(<constants = 2, bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(0) alignment(64) offset(%4#0) flags("ReadOnly|Indirect") : !iree_tensor_ext.dispatch.tensor<readonly:tensor<4x?x128256xf16>>{%7} | |
%9 = iree_tensor_ext.dispatch.tensor.load %8, offsets = [0, 0, 0], sizes = [4, %7, 128256], strides = [1, 1, 1] : !iree_tensor_ext.dispatch.tensor<readonly:tensor<4x?x128256xf16>>{%7} -> tensor<4x?x128256xf16> | |
%10 = iree_tensor_ext.dispatch.tensor.load %5, offsets = [0], sizes = [4], strides = [1] : !iree_tensor_ext.dispatch.tensor<readonly:tensor<4xi64>> -> tensor<4xi64> | |
%11 = tensor.empty() : tensor<4x128256xf16> | |
%12 = tensor.empty() : tensor<4x128256xf32> | |
%13 = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%cst, %10 : tensor<4xi64>, tensor<4xi64>) outs(%12 : tensor<4x128256xf32>) { | |
^bb0(%in: i64, %in_0: i64, %out: f32): | |
%16 = arith.subi %in_0, %c1_i64 : i64 | |
%17 = linalg.index 1 : index | |
%18 = arith.cmpi slt, %in, %c0_i64 : i64 | |
%19 = arith.addi %in, %c4_i64 : i64 | |
%20 = arith.select %18, %19, %in : i64 | |
%21 = arith.index_cast %20 : i64 to index | |
%22 = arith.cmpi slt, %16, %c0_i64 : i64 | |
%23 = arith.index_castui %7 : index to i64 | |
%24 = arith.addi %16, %23 : i64 | |
%25 = arith.select %22, %24, %16 : i64 | |
%26 = arith.index_cast %25 : i64 to index | |
%extracted = tensor.extract %9[%21, %26, %17] : tensor<4x?x128256xf16> | |
%27 = arith.extf %extracted : f16 to f32 | |
linalg.yield %27 : f32 | |
} -> tensor<4x128256xf32> | |
%14 = linalg.softmax dimension(1) ins(%13 : tensor<4x128256xf32>) outs(%12 : tensor<4x128256xf32>) -> tensor<4x128256xf32> | |
%15 = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%14 : tensor<4x128256xf32>) outs(%11 : tensor<4x128256xf16>) { | |
^bb0(%in: f32, %out: f16): | |
%16 = arith.truncf %in : f32 to f16 | |
%17 = math.log %16 : f16 | |
linalg.yield %17 : f16 | |
} -> tensor<4x128256xf16> | |
iree_tensor_ext.dispatch.tensor.store %15, %6, offsets = [0, 0], sizes = [4, 128256], strides = [1, 1] : tensor<4x128256xf16> -> !iree_tensor_ext.dispatch.tensor<writeonly:tensor<4x128256xf16>> | |
return | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment