Skip to content

Instantly share code, notes, and snippets.

View pashu123's full-sized avatar
๐Ÿ˜‡
Working from home

Prashant Kumar pashu123

๐Ÿ˜‡
Working from home
View GitHub Profile
module attributes {torch.debug_module_name = "GraphModule"} {
func private @__torch__.torch.fx.graph_module.___torch_mangle_2.GraphModule.forward(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module.___torch_mangle_2.GraphModule">, %arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg2: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg3: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg4: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg5: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg6: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg7: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg8: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg9: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg10: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg11: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg12: !torch.tensor {to
module attributes {torch.debug_module_name = "GraphModule"} {
func @forward(%arg0: !torch.vtensor<[768],f32>, %arg1: !torch.vtensor<[768],f32>, %arg2: !torch.vtensor<[768],f32>, %arg3: !torch.vtensor<[768],f32>, %arg4: !torch.vtensor<[768],f32>, %arg5: !torch.vtensor<[768],f32>, %arg6: !torch.vtensor<[768],f32>, %arg7: !torch.vtensor<[768],f32>, %arg8: !torch.vtensor<[768],f32>, %arg9: !torch.vtensor<[768],f32>, %arg10: !torch.vtensor<[768],f32>, %arg11: !torch.vtensor<[768],f32>, %arg12: !torch.vtensor<[768],f32>, %arg13: !torch.vtensor<[768],f32>, %arg14: !torch.vtensor<[768],f32>, %arg15: !torch.vtensor<[768],f32>, %arg16: !torch.vtensor<[768],f32>, %arg17: !torch.vtensor<[768],f32>, %arg18: !torch.vtensor<[768],f32>, %arg19: !torch.vtensor<[768],f32>, %arg20: !torch.vtensor<[768],f32>, %arg21: !torch.vtensor<[768],f32>, %arg22: !torch.vtensor<[768],f32>, %arg23: !torch.vtensor<[768],f32>, %arg24: !torch.vtensor<[768],f32>, %arg25: !torch.vtensor<[768],f32>, %arg26: !torch.vtensor<[768],f32>, %arg27: !to
from iree import runtime as ireert
from iree.compiler import tf as tfc
import sys
from absl import app
import numpy as np
import os
import tempfile
import tensorflow as tf
#map0 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d0, d1)>
#map2 = affine_map<(d0, d1) -> (d0, d1)>
#map3 = affine_map<(d0, d1) -> ()>
#map4 = affine_map<(d0, d1) -> (d0)>
#map5 = affine_map<(d0, d1) -> (d0, 0)>
#map6 = affine_map<(d0, d1) -> (d1, d0)>
#map7 = affine_map<(d0, d1) -> (0, d1)>
#map8 = affine_map<(d0, d1, d2) -> (d0, d1, 0)>
#map9 = affine_map<(d0, d1, d2) -> (d2)>
/home/prashant/dSHARK/shark.venv/lib/python3.9/site-packages/bert_pytorch/model/attention/single.py:16: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
/ math.sqrt(query.size(-1))
/home/prashant/dSHARK/shark.venv/lib/python3.9/site-packages/torch/jit/_trace.py:983: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error:
Tensor-likes are not close!
Mismatched elements: 97297 / 98304 (99.0%)
Greatest absolute difference: 24.81045150756836 at index (0, 71, 4) (up to 1e-05 allowed)
Greatest relative difference: inf at index (0, 0, 5) (up to 1e-05 allowed)
_check_trace(
/home/prashant/dSHARK/shark.venv/lib/python3.9/site-packages/bert_pytorch/model/attention/single.py:16: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
/ math.sqrt(query.size(-1))
/home/prashant/dSHARK/shark.venv/lib/python3.9/site-packages/torch/jit/_trace.py:983: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error:
Tensor-likes are not close!
Mismatched elements: 97297 / 98304 (99.0%)
Greatest absolute difference: 24.81045150756836 at index (0, 71, 4) (up to 1e-05 allowed)
Greatest relative difference: inf at index (0, 0, 5) (up to 1e-05 allowed)
_check_trace(
import torch
from shark.shark_runner import SharkInference
from bert_pytorch import BERT
torch.manual_seed(0)
class BERT_torch(torch.nn.Module):
def __init__(self):
graph():
%params_1 : [#users=4] = placeholder[target=params_1]
%params_2 : [#users=4] = placeholder[target=params_2]
%optim_state_1 : [#users=0] = placeholder[target=optim_state_1]
%optim_state_2 : [#users=0] = placeholder[target=optim_state_2]
%optim_state_3 : [#users=0] = placeholder[target=optim_state_3]
%optim_state_4 : [#users=0] = placeholder[target=optim_state_4]
%optim_state_5 : [#users=0] = placeholder[target=optim_state_5]
%optim_state_6 : [#users=0] = placeholder[target=optim_state_6]
%optim_state_7 : [#users=0] = placeholder[target=optim_state_7]
import torch
from functorch.compile import aot_function, nop
from functorch import make_fx
from torch.nn.utils import _stateless
from torchvision.models import resnet18
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
graph(%self : __torch__.torch.fx.graph_module.f,
%params_1.1 : Tensor,
%params_2.1 : Tensor,
%args_1.1 : Tensor):
%90 : float = prim::Constant[value=-0.01]() # <eval_with_key>.2:26:59
%57 : bool = prim::Constant[value=1]() # <eval_with_key>.2:17:46
%26 : bool = prim::Constant[value=0]() # <eval_with_key>.2:9:132
%115 : Device = prim::Constant[value="cpu"]()
%17 : NoneType = prim::Constant()
%23 : int = prim::Constant[value=6]() # <eval_with_key>.2:9:85