๐
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map0 = affine_map<(d0) -> (0)> | |
#map1 = affine_map<(d0) -> (d0)> | |
#map2 = affine_map<(d0) -> ()> | |
#map3 = affine_map<() -> ()> | |
#map4 = affine_map<(d0, d1) -> ()> | |
#map5 = affine_map<(d0, d1) -> (d0, d1)> | |
#map6 = affine_map<(d0, d1) -> (d0, 0)> | |
#map7 = affine_map<(d0, d1) -> (0, d1)> | |
#map8 = affine_map<(d0, d1) -> (d1, d0)> | |
#map9 = affine_map<(d0, d1) -> (d1)> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler | |
import torch | |
from PIL import Image | |
from diffusers import LMSDiscreteScheduler | |
from tqdm.auto import tqdm | |
from shark.shark_inference import SharkInference | |
from torch.fx.experimental.proxy_tensor import make_fx | |
from torch._decomp import get_decompositions | |
import torch_mlir |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map0 = affine_map<() -> ()> | |
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> | |
#map2 = affine_map<(d0, d1, d2, d3) -> ()> | |
#map3 = affine_map<(d0) -> (0)> | |
#map4 = affine_map<(d0) -> (d0)> | |
#map5 = affine_map<(d0) -> ()> | |
#map6 = affine_map<(d0, d1) -> ()> | |
#map7 = affine_map<(d0, d1) -> (d0, d1)> | |
#map8 = affine_map<(d0, d1) -> (d0, 0)> | |
#map9 = affine_map<(d0, d1) -> (0, d1)> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module attributes {torch.debug_module_name = "_lambda"} { | |
func.func @forward(%arg0: !torch.vtensor<[1,4,64,64],f16>, %arg1: !torch.vtensor<[1],f16>, %arg2: !torch.vtensor<[2,77,768],f16>, %arg3: !torch.vtensor<[],f32>) -> !torch.vtensor<[1,4,64,64],f16> { | |
%int64 = torch.constant.int 64 | |
%int320 = torch.constant.int 320 | |
%int2 = torch.constant.int 2 | |
%int40960 = torch.constant.int 40960 | |
%int4096 = torch.constant.int 4096 | |
%int10 = torch.constant.int 10 | |
%int32 = torch.constant.int 32 | |
%int640 = torch.constant.int 640 |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map0 = affine_map<(d0) -> (0)> | |
#map1 = affine_map<(d0) -> (d0)> | |
#map2 = affine_map<(d0) -> ()> | |
#map3 = affine_map<() -> ()> | |
#map4 = affine_map<(d0, d1) -> ()> | |
#map5 = affine_map<(d0, d1) -> (d0, d1)> | |
#map6 = affine_map<(d0, d1) -> (d0, 0)> | |
#map7 = affine_map<(d0, d1) -> (0, d1)> | |
#map8 = affine_map<(d0, d1) -> (d1, d0)> | |
#map9 = affine_map<(d0, d1) -> (d1)> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @forward(%arg0: !torch.vtensor<[2,4,96,96],f32>, %arg1: !torch.vtensor<[2],si64>, %arg2: !torch.vtensor<[2,77,1024],f32>) -> !torch.vtensor<[2,4,96,96],f16> { | |
%int160 = torch.constant.int 160 | |
%0 = torch.vtensor.literal(dense<1.250000e-01> : tensor<f64>) : !torch.vtensor<[],f64> | |
%1 = torch.vtensor.literal(dense<9.9999999999999995E-7> : tensor<f64>) : !torch.vtensor<[],f64> | |
%2 = torch.vtensor.literal(dense<1.000000e-05> : tensor<f64>) : !torch.vtensor<[],f64> | |
%3 = torch.vtensor.literal(dense<160> : tensor<si64>) : !torch.vtensor<[],si64> | |
%4 = torch.vtensor.literal(dense<-9.2103403719761836> : tensor<f64>) : !torch.vtensor<[],f64> | |
%5 = torch.vtensor.literal(dense_resource<__elided__> : tensor<1280x320xf32>) : !torch.vtensor<[1280,320],f32> | |
%6 = torch.vtensor.literal(dense_resource<__elided__> : tensor<320x4x3x3xf32>) : !torch.vtensor<[320,4,3,3],f32> | |
%7 = torch.vtensor.literal(dense_resource<__elided__> : tensor<640x320x3x3xf32>) : !torch.vtensor<[640,320,3,3],f32> |
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map = affine_map<(d0) -> (d0)> | |
#map1 = affine_map<(d0) -> ()> | |
#map2 = affine_map<() -> ()> | |
#map3 = affine_map<(d0, d1) -> ()> | |
#map4 = affine_map<(d0, d1) -> (d0, d1)> | |
#map5 = affine_map<(d0, d1) -> (d0, 0)> | |
#map6 = affine_map<(d0, d1) -> (0, d1)> | |
#map7 = affine_map<(d0, d1) -> (d1, d0)> | |
#map8 = affine_map<(d0, d1) -> (d1)> | |
#map9 = affine_map<(d0, d1, d2, d3) -> ()> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
func.func @forward(%arg0: !torch.vtensor<[1,77],si64>) -> !torch.vtensor<[1,77,1024],f16> { | |
%0 = torch.vtensor.literal(dense<1.250000e-01> : tensor<f64>) : !torch.vtensor<[],f64> | |
%1 = torch.vtensor.literal(dense_resource<__elided__> : tensor<1x77xsi64>) : !torch.vtensor<[1,77],si64> | |
%2 = torch.vtensor.literal(dense_resource<__elided__> : tensor<49408x1024xf16>) : !torch.vtensor<[49408,1024],f16> | |
%3 = torch.vtensor.literal(dense_resource<__elided__> : tensor<77x1024xf16>) : !torch.vtensor<[77,1024],f16> | |
%4 = torch.vtensor.literal(dense<-6.550400e+04> : tensor<f32>) : !torch.vtensor<[],f32> | |
%5 = torch.vtensor.literal(dense_resource<__elided__> : tensor<1024x1024xf16>) : !torch.vtensor<[1024,1024],f16> | |
%6 = torch.vtensor.literal(dense_resource<__elided__> : tensor<4096x1024xf16>) : !torch.vtensor<[4096,1024],f16> | |
%7 = torch.vtensor.literal(dense_resource<__elided__> : tensor<4096xf16>) : !torch.vtensor<[4096],f16> | |
%8 = torch.vtensor.literal(dense_resource<__elided__> : tensor<1024x4096xf16>) : |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module attributes {torch.debug_module_name = "_lambda"} { | |
func.func private @__torch__.torch.fx.graph_module._lambda.forward(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda">, %arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[1,77],si64>}) -> !torch.tensor { | |
%199 = torch.tensor_static_info_cast %arg1 : !torch.tensor to !torch.tensor<[1,77],si64> | |
%200 = torch.prim.GetAttr %arg0["_param_constant195"] : !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> -> !torch.tensor | |
%201 = torch.prim.GetAttr %arg0["_param_constant194"] : !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> -> !torch.tensor | |
%202 = torch.prim.GetAttr %arg0["_param_constant193"] : !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> -> !torch.tensor | |
%203 = torch.prim.GetAttr %arg0["_param_constant192"] : !torch.nn.Module<"__torch__.torch.fx.graph_module._lambda"> -> !torch.tensor | |
%204 = torch.prim.GetAttr %arg0["_param_constant191"] : !torch.nn.Module<"__torch__.torch.fx.g |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | |
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, 0)> | |
module attributes {torch.debug_module_name = "_lambda"} { | |
func.func @forward(%arg0: tensor<10x9216x9216xf16>, %arg1: tensor<1xf16>, %arg2: tensor<2x77x1024xf16>, %arg3: tensor<f32>) -> tensor<10x9216x9216xf16> { | |
%cst = arith.constant 0.000000e+00 : f16 | |
%0 = tensor.empty() : tensor<10x9216x9216xf16> | |
%1 = tensor.empty() : tensor<10x9216x1xf16> | |
%2 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel"]} ins(%arg0 : tensor<10x9216x9216xf16>) outs(%0 : tensor<10x9216x9216xf16>) { | |
^bb0(%in: f16, %out: f16): | |
%6 = math.exp %in : f16 |