Created
September 6, 2019 09:07
-
-
Save pat-s/87987bd748384668b6be45cb75c0d682 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
remotes::install_github("mlr-org/mlr@0c8185963f13303e143d634dc5bcd199edb01442") | |
library(mlr) | |
library(ParamHelpers) | |
library(parallelMap) | |
library(magrittr) | |
inner <- makeResampleDesc("CV", iters = 2) | |
outer <- makeResampleDesc("CV", iters = 4) | |
lrn_xgboost <- makeLearner( | |
"regr.xgboost", | |
par.vals = list( | |
objective = "reg:linear", | |
eval_metric = "error" | |
) | |
) | |
tune.ctrl_xgboost <- makeTuneControlRandom(maxit = 5L) | |
ps_xgboost_filter <- makeParamSet( | |
makeIntegerParam("nrounds", lower = 10, upper = 600), | |
makeNumericParam("colsample_bytree", lower = 0.3, upper = 0.7), | |
makeNumericParam("subsample", lower = 0.25, upper = 1), | |
makeIntegerParam("max_depth", lower = 1, upper = 10), | |
makeNumericParam("gamma", lower = 0, upper = 10), | |
makeNumericParam("eta", lower = 0.001, upper = 0.6), | |
makeNumericParam("min_child_weight", lower = 0, upper = 20), | |
makeNumericParam("fw.perc", lower = 0, upper = 1) | |
) | |
filter_wrapper_xgboost_borda <- makeFilterWrapper(lrn_xgboost, | |
fw.method = "E-Borda", cache = TRUE, | |
fw.base.methods = c( | |
"FSelectorRcpp_information.gain", | |
"linear.correlation", | |
"praznik_MRMR", "praznik_CMIM", | |
"carscore" | |
), | |
more.args = list("FSelectorRcpp_information.gain" = list(equal = TRUE)) # FSelectorRcpp | |
) | |
filter_wrapper_xgboost_gain.ratio <- makeFilterWrapper(lrn_xgboost, fw.method = "FSelectorRcpp_gain.ratio", cache = TRUE, equal = TRUE) | |
filter_wrapper_xgboost_info.gain <- makeFilterWrapper(lrn_xgboost, fw.method = "FSelectorRcpp_information.gain", cache = TRUE, equal = TRUE) | |
filter_wrapper_xgboost_variance <- makeFilterWrapper(lrn_xgboost, fw.method = "variance", cache = TRUE) | |
filter_wrapper_xgboost_rank.cor <- makeFilterWrapper(lrn_xgboost, fw.method = "rank.correlation", cache = TRUE) | |
filter_wrapper_xgboost_linear.cor <- makeFilterWrapper(lrn_xgboost, fw.method = "linear.correlation", cache = TRUE) | |
filter_wrapper_xgboost_mrmr <- makeFilterWrapper(lrn_xgboost, fw.method = "praznik_MRMR", cache = TRUE) | |
filter_wrapper_xgboost_cmim <- makeFilterWrapper(lrn_xgboost, fw.method = "praznik_CMIM", cache = TRUE) | |
filter_wrapper_xgboost_carscore <- makeFilterWrapper(lrn_xgboost, fw.method = "carscore", cache = TRUE) | |
# XGBOOST ----------------------------------------------------------------- | |
xgboost_borda <- makeTuneWrapper(filter_wrapper_xgboost_borda, | |
resampling = inner, | |
par.set = ps_xgboost_filter, | |
control = tune.ctrl_xgboost, | |
show.info = TRUE, measures = list(rmse) | |
) %>% | |
magrittr::inset("id", "XGBoost Borda") | |
xgboost_info.gain <- makeTuneWrapper(filter_wrapper_xgboost_info.gain, | |
resampling = inner, | |
par.set = ps_xgboost_filter, | |
control = tune.ctrl_xgboost, show.info = TRUE, | |
measures = list(rmse) | |
) %>% | |
magrittr::inset("id", "XGBoost Info Gain") | |
xgboost_gain.ratio <- makeTuneWrapper(filter_wrapper_xgboost_gain.ratio, | |
resampling = inner, | |
par.set = ps_xgboost_filter, | |
control = tune.ctrl_xgboost, show.info = TRUE, | |
measures = list(rmse) | |
) %>% | |
magrittr::inset("id", "XGBoost Gain Ratio") | |
xgboost_variance <- makeTuneWrapper(filter_wrapper_xgboost_variance, | |
resampling = inner, | |
par.set = ps_xgboost_filter, | |
control = tune.ctrl_xgboost, show.info = TRUE, | |
measures = list(rmse) | |
) %>% | |
magrittr::inset("id", "XGBoost Variance") | |
xgboost_rank.cor <- makeTuneWrapper(filter_wrapper_xgboost_rank.cor, | |
resampling = inner, | |
par.set = ps_xgboost_filter, | |
control = tune.ctrl_xgboost, show.info = TRUE, | |
measures = list(rmse) | |
) %>% | |
magrittr::inset("id", "XGBoost Spearman") | |
xgboost_linear.cor <- makeTuneWrapper(filter_wrapper_xgboost_linear.cor, | |
resampling = inner, | |
par.set = ps_xgboost_filter, | |
control = tune.ctrl_xgboost, show.info = TRUE, | |
measures = list(rmse) | |
) %>% | |
magrittr::inset("id", "XGBoost Pearson") | |
xgboost_mrmr <- makeTuneWrapper(filter_wrapper_xgboost_mrmr, | |
resampling = inner, | |
par.set = ps_xgboost_filter, | |
control = tune.ctrl_xgboost, show.info = TRUE, | |
measures = list(rmse) | |
) %>% | |
magrittr::inset("id", "XGBoost MRMR") | |
xgboost_cmim <- makeTuneWrapper(filter_wrapper_xgboost_cmim, | |
resampling = inner, | |
par.set = ps_xgboost_filter, | |
control = tune.ctrl_xgboost, show.info = TRUE, | |
measures = list(rmse) | |
) %>% | |
magrittr::inset("id", "XGBoost CMIM") | |
xgboost_carscore <- makeTuneWrapper(filter_wrapper_xgboost_carscore, | |
resampling = inner, | |
par.set = ps_xgboost_filter, | |
control = tune.ctrl_xgboost, show.info = TRUE, | |
measures = list(rmse) | |
) %>% | |
magrittr::inset("id", "XGBoost Car") | |
parallelStart( | |
mode = "multicore", | |
level = "mlr.resample", | |
cpus = 4 | |
) | |
set.seed(12345) | |
learner_list = list(xgboost_carscore, xgboost_cmim, | |
xgboost_mrmr, xgboost_linear.cor, xgboost_gain.ratio, | |
xgboost_variance, xgboost_borda) | |
bh.task_cust = dropFeatures(bh.task, "chas") | |
task_list = list(bh.task_cust) | |
bmr <- benchmark( | |
learners = learner_list, | |
tasks = task_list, | |
models = FALSE, | |
keep.pred = TRUE, | |
resamplings = outer, | |
show.info = TRUE, | |
measures = list(rmse, timetrain) | |
) | |
parallelStop() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment