|
import argparse |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
import models |
|
from models.experimental import attempt_load |
|
from utils.activations import Mish |
|
from onnxsim import simplify |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', type=str, default='./weights/yolov4-p5.pt', help='weights path') # from yolov5/models/ |
|
parser.add_argument('--img-size', nargs='+', type=int, default=[896, 896], help='image size') # height, width |
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
opt = parser.parse_args() |
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand |
|
print(opt) |
|
|
|
# Input |
|
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection |
|
|
|
# Load PyTorch model |
|
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model |
|
|
|
# Update model |
|
for k, m in model.named_modules(): |
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability |
|
if isinstance(m, models.common.Conv) and isinstance(m.act, models.common.Mish): |
|
m.act = Mish() # assign activation |
|
if isinstance(m, models.common.BottleneckCSP) or isinstance(m, models.common.BottleneckCSP2) \ |
|
or isinstance(m, models.common.SPPCSP): |
|
if isinstance(m.bn, nn.SyncBatchNorm): |
|
bn = nn.BatchNorm2d(m.bn.num_features, eps=m.bn.eps, momentum=m.bn.momentum) |
|
bn.training = False |
|
bn._buffers = m.bn._buffers |
|
bn._non_persistent_buffers_set = set() |
|
m.bn = bn |
|
if isinstance(m.act, models.common.Mish): |
|
m.act = Mish() # assign activation |
|
# if isinstance(m, models.yolo.Detect): |
|
# m.forward = m.forward_export # assign forward (optional) |
|
|
|
model.eval() |
|
model.model[-1].export = True # set Detect() layer export=True |
|
# y = model(img) # dry run |
|
|
|
# ONNX export |
|
try: |
|
import onnx |
|
|
|
print('\nStarting ONNX export with onnx %s...' % onnx.__version__) |
|
f = opt.weights.replace('.pt', '.onnx') # filename |
|
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], |
|
output_names=['output']) |
|
|
|
# Checks |
|
onnx_model = onnx.load(f) # load onnx model |
|
model_simp, check = simplify(onnx_model) |
|
assert check, "Simplified ONNX model could not be validated" |
|
onnx.save(model_simp, f) |
|
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model |
|
print('ONNX export success, saved as %s' % f) |
|
except Exception as e: |
|
print('ONNX export failure: %s' % e) |
|
|
|
# Finish |
|
print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.') |