Skip to content

Instantly share code, notes, and snippets.

@patharanordev
Created February 14, 2021 04:10
Show Gist options
  • Save patharanordev/d016eb2cb31be342a1b9c2b1644f5899 to your computer and use it in GitHub Desktop.
Save patharanordev/d016eb2cb31be342a1b9c2b1644f5899 to your computer and use it in GitHub Desktop.
Test PlaidML performance via simple VGG model
#!/usr/bin/env python
import numpy as np
import os
import time
os.environ['KERAS_BACKEND'] = 'plaidml.keras.backend'
import keras
import keras.applications as kapp
from keras.datasets import cifar10
(x_train, y_train_cats), (x_test, y_test_cats) = cifar10.load_data()
batch_size = 8
x_train = x_train[:batch_size]
x_train = np.repeat(np.repeat(x_train, 7, axis=1), 7, axis=2)
model = kapp.VGG19()
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
print('Running initial batch (compiling tile program)')
y = model.predict(x=x_train, batch_size=batch_size)
print('Timing inference...')
start = time.time()
for i in range(10):
y = model.predict(x=x_train, batch_size=batch_size)
print('Ran in {} seconds'.format(time.time() - start))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment