-
-
Save patrickgalbraith/74f0996d7c26c34a74fdff92d861fc2c to your computer and use it in GitHub Desktop.
Hack to load custom depth map
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
diff --git a/modules/processing.py b/modules/processing.py | |
index 24c537d..0525cfd 100644 | |
--- a/modules/processing.py | |
+++ b/modules/processing.py | |
@@ -156,20 +156,41 @@ class StableDiffusionProcessing(): | |
return image_conditioning | |
def depth2img_image_conditioning(self, source_image): | |
- # Use the AddMiDaS helper to Format our source image to suit the MiDaS model | |
- transformer = AddMiDaS(model_type="dpt_hybrid") | |
- transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")}) | |
- midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device) | |
- midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size) | |
- | |
- conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) | |
- conditioning = torch.nn.functional.interpolate( | |
- self.sd_model.depth_model(midas_in), | |
- size=conditioning_image.shape[2:], | |
- mode="bicubic", | |
- align_corners=False, | |
- ) | |
- | |
+ conditioning = None | |
+ | |
+ try: | |
+ script_dir = os.path.dirname(__file__) | |
+ rel_path = "../depthmap/current.png" | |
+ depth_img = Image.open(os.path.join(script_dir, rel_path)) | |
+ depth_img = depth_img.convert("L") | |
+ depth_img = np.expand_dims(depth_img, axis=0) | |
+ depth_img = np.expand_dims(depth_img, axis=0).repeat(self.batch_size, axis=0) | |
+ depth_img = torch.from_numpy(depth_img) | |
+ depth_img = 2. * depth_img - 1. | |
+ depth_img = depth_img.to(shared.device) | |
+ | |
+ conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) | |
+ conditioning = torch.nn.functional.interpolate( | |
+ depth_img, | |
+ size=conditioning_image.shape[2:], | |
+ mode="bicubic", | |
+ align_corners=False, | |
+ ) | |
+ except: | |
+ # Use the AddMiDaS helper to Format our source image to suit the MiDaS model | |
+ transformer = AddMiDaS(model_type="dpt_hybrid") | |
+ transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")}) | |
+ midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device) | |
+ midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size) | |
+ | |
+ conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) | |
+ conditioning = torch.nn.functional.interpolate( | |
+ self.sd_model.depth_model(midas_in), | |
+ size=conditioning_image.shape[2:], | |
+ mode="bicubic", | |
+ align_corners=False, | |
+ ) | |
+ | |
(depth_min, depth_max) = torch.aminmax(conditioning) | |
conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1. | |
return conditioning |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Checks if there is a file at "../depthmap/current.png" and uses that otherwise falls back to MiDaS depth map.
Apply to webui using: