Last active
May 12, 2019 03:49
-
-
Save paulaksm/38c244cb5124eaa987632e8092e6f7ca to your computer and use it in GitHub Desktop.
AlgeLin - Métodos Iterativos Modernos: Gradiente e Gradiente Conjugado
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
A = np.array([[5,1,1], [1,4,1], [1,1,3]]) | |
b = np.array([10, 12,12]) | |
x = np.array([0,0,0]) | |
def conjugate_gradient_method(A, b, x=np.array([0,0,0]), n_iter=5): | |
d = b - np.dot(A,x) | |
r = d | |
for i in range(n_iter): | |
print('Iteration:', i+1) | |
alpha_num = np.dot(r.transpose(), d) | |
alpha_den_1 = np.dot(d.transpose(), A) | |
alpha_den = np.dot(alpha_den_1, d) | |
alpha = alpha_num / alpha_den | |
print('alpha = {} / {} = {}'.format(alpha_num, alpha_den, alpha)) | |
x = x + (alpha * d) | |
print('x({}) = {}'.format(i+1, x)) | |
r = b - np.dot(A, x) | |
print('r = {}'.format(r)) | |
beta_num_1 = np.dot(d.transpose(), A) | |
beta_num = - np.dot(beta_num_1, r) | |
beta_den_1 = np.dot(d.transpose(), A) | |
beta_den = np.dot(beta_den_1, d) | |
beta = beta_num / beta_den | |
print('beta = {} / {} = {}'.format(beta_num, beta_den, beta)) | |
d = r + (beta * d) | |
print('d = {}'.format(d)) | |
r_norm = np.linalg.norm(r, 2) | |
print('r_norm = {}'.format(r_norm)) | |
print('===========================') | |
return np.round(x, 3) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
A = np.array([[5,1,1], [1,4,1], [1,1,3]]) | |
b = np.array([10, 12,12]) | |
x = np.array([0,0,0]) | |
def gradient_method(A, b, x=np.array([0,0,0]), n_iter=5): | |
r = b - np.dot(A,x) | |
print('First r:', r) | |
print('x(0) = {}\n'.format(x)) | |
for i in range(n_iter): | |
print('Iteration:', i+1) | |
transpose_matmul_a = np.dot(r.transpose(), A) | |
alpha_num = round(np.dot(r.transpose(), r), 3) | |
alpha_dem = round(np.dot(transpose_matmul_a, r), 3) | |
alpha = round(alpha_num / alpha_dem, 3) | |
print('alpha = {} / {} = {}'.format(alpha_num, alpha_dem, alpha)) | |
x = np.round(x + np.round(alpha * r, 3), 3) | |
print('x({}) = {}'.format(i+1, x)) | |
r = np.round(b - np.round(np.dot(A,x),3), 3) | |
print('r = {}'.format(r)) | |
r_norm = np.round(np.linalg.norm(r, 2), 3) | |
print('r_norm = {}'.format(r_norm)) | |
print('===========================') | |
return x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment