Created
December 19, 2016 07:52
-
-
Save pavlov99/bd265be244f8a84e291e96c5656ceb5c to your computer and use it in GitHub Desktop.
Spherical distance calcualtion based on latitude and longitude with Apache Spark
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Based on following links: | |
// http://andrew.hedges.name/experiments/haversine/ | |
// http://www.movable-type.co.uk/scripts/latlong.html | |
df | |
.withColumn("a", pow(sin(toRadians($"destination_latitude" - $"origin_latitude") / 2), 2) + cos(toRadians($"origin_latitude")) * cos(toRadians($"destination_latitude")) * pow(sin(toRadians($"destination_longitude" - $"origin_longitude") / 2), 2)) | |
.withColumn("distance", atan2(sqrt($"a"), sqrt(-$"a" + 1)) * 2 * 6371) | |
>>> | |
+--------------+-------------------+-------------+----------------+---------------+----------------+--------------------+---------------------+--------------------+------------------+ | |
|origin_airport|destination_airport| origin_city|destination_city|origin_latitude|origin_longitude|destination_latitude|destination_longitude| a| distance| | |
+--------------+-------------------+-------------+----------------+---------------+----------------+--------------------+---------------------+--------------------+------------------+ | |
| HKG| SYD| Hong Kong| Sydney| 22.308919| 113.914603| -33.946111| 151.177222| 0.3005838068886348|7393.8837884771565| | |
| YYZ| HKG| Toronto| Hong Kong| 43.677223| -79.630556| 22.308919| 113.914603| 0.6941733892671567|12548.533187172497| | |
+--------------+-------------------+-------------+----------------+---------------+----------------+--------------------+---------------------+--------------------+------------------+ |
+1
Thanks @pavlov99, I still use this!
Thanks a lot for this! I ported it to Pyspark, maybe it helps someone:
import pyspark.sql.functions as F
df = df.withColumn("a", (
F.pow(F.sin(F.radians(F.col("destination_latitude") - F.col("origin_latitude")) / 2), 2) +
F.cos(F.radians(F.col("origin_latitude"))) * F.cos(F.radians(F.col("destination_latitude"))) *
F.pow(F.sin(F.radians(F.col("destination_longitude") - F.col("origin_longitude")) / 2), 2)
)).withColumn("distance", F.atan2(F.sqrt(F.col("a")), F.sqrt(-F.col("a") + 1)) * 12742000)
Thanks @pavlov99 and @harpaj!. Worth noting that harpaj's code gives distance in meters
and if you like sql:
cast(atan2(sqrt(
(
pow(sin(radians(lat_r - lat_l))/2, 2) +
cos(radians(lat_l)) * cos(radians(lat_r)) *
pow(sin(radians(long_r - long_l)/2),2)
)
), sqrt(-1*
(
pow(sin(radians(lat_r - lat_l))/2, 2) +
cos(radians(lat_l)) * cos(radians(lat_r)) *
pow(sin(radians(long_r - long_l)/2),2)
)
+ 1)) * 12742 as float) as distance_km
I took @harpaj 's code and put it into a function
def hav_dist(origin_lat, origin_long, dest_lat, dest_long):
a = (
F.pow(F.sin(F.radians(dest_lat - origin_lat) / 2), 2) +
F.cos(F.radians(origin_lat)) * F.cos(F.radians(dest_lat)) *
F.pow(F.sin(F.radians(dest_long - origin_long) / 2), 2))
return ( F.atan2(F.sqrt(a), F.sqrt(-a + 1)) * 12742)
I took @harpaj 's code and implement it based on numpy, the return distance is in KM
import numpy as np
def haversine(origin_lat,
origin_long,
dest_lat,
dest_long) -> float:
o_lat = np.asarray(origin_lat)
o_long = np.asarray(origin_long)
d_lat = np.asarray(dest_lat)
d_long = np.asarray(dest_long)
a = np.sin(np.radians(d_lat - o_lat) / 2) ** 2
b = np.cos(np.radians(o_lat)) * np.cos(np.radians(d_lat))
c = np.sin(np.radians(d_long - o_long) / 2) ** 2
d = a + b * c
return np.arctan2(np.sqrt(d), np.sqrt(-d + 1)) * 12742
assert abs(haversine(22.308919, 113.914603, -33.946111, 151.177222) - 7393.8837884771565) < 1e-6
assert abs(haversine(43.677223, -79.630556, 22.308919, 113.914603) - 12548.533187172497) < 1e-6
Thanks, saved me a performance bottleneck I had!
in case anyone wants to save a column
import org.apache.spark.sql.Column
def haversineDistance(destination_latitude: Column, destination_longitude: Column, origin_latitude: Column, origin_longitude: Column): Column = {
val a = pow(sin(toRadians(destination_latitude - origin_latitude) / 2), 2) + cos(toRadians(origin_latitude)) * cos(toRadians(destination_latitude)) * pow(sin(toRadians(destination_longitude - origin_longitude) / 2), 2)
val distance = atan2(sqrt(a), sqrt(-a + 1)) * 2 * 6371
return distance
}
val x = Seq(
("Hong Kong", "Sydney", 22.308919, 113.914603, -33.946111, 151.177222),
("Toronto", "Hong Kong", 43.677223, -79.630556, 22.308919, 113.914603)
).toDF("origin_city", "destination_city", "origin_latitude", "origin_longitude", "destination_latitude", "destination_longitude")
.withColumn("distance", haversineDistance($"destination_latitude", $"destination_longitude", $"origin_latitude", $"origin_longitude"))
x.show()
+-----------+----------------+---------------+----------------+--------------------+---------------------+------------------+
|origin_city|destination_city|origin_latitude|origin_longitude|destination_latitude|destination_longitude| distance|
+-----------+----------------+---------------+----------------+--------------------+---------------------+------------------+
| Hong Kong| Sydney| 22.308919| 113.914603| -33.946111| 151.177222|7393.8837884771565|
| Toronto| Hong Kong| 43.677223| -79.630556| 22.308919| 113.914603|12548.533187172497|
+-----------+----------------+---------------+----------------+--------------------+---------------------+------------------+
Love this thread of people sharing different implementations for different needs ❤️
Also saved me some time, so thanks all!
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
AVG_EARTH_RADIUS = 6371.0
def haversine(lat1, lng1, lat2, lng2):
"""Cython fast-distance as Spark SQL"""
lat1 = F.radians(lat1)
lng1 = F.radians(lng1)
lat2 = F.radians(lat2)
lng2 = F.radians(lng2)
lat = lat2 - lat1
lng = lng2 - lng1
d = F.sin(lat * 0.5) ** 2 + F.cos(lat1) * F.cos(lat2) * F.sin(lng * 0.5) ** 2
return 2 * AVG_EARTH_RADIUS * F.asin(F.sqrt(d))
>>>
+-------+---------+----------+----------+
|airport| city| lat| lng|
+-------+---------+----------+----------+
| HKG|Hong Kong| 22.308919|113.914603|
| SYD| Sydney|-33.946111|151.177222|
| YYZ| Toronto| 43.677223|-79.630556|
+-------+---------+----------+----------+
+---------------------------------------+-------------------------------------+------------------+
|a |b |distance |
+---------------------------------------+-------------------------------------+------------------+
|{HKG, Hong Kong, 22.308919, 113.914603}|{SYD, Sydney, -33.946111, 151.177222}|7393.8837884771565|
|{HKG, Hong Kong, 22.308919, 113.914603}|{YYZ, Toronto, 43.677223, -79.630556}|12548.533187172497|
|{SYD, Sydney, -33.946111, 151.177222} |{YYZ, Toronto, 43.677223, -79.630556}|15554.728375861841|
+---------------------------------------+-------------------------------------+------------------+
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks for sharing, this was a huge help!