Skip to content

Instantly share code, notes, and snippets.

@pbamotra
Forked from thomasdullien/inception_annoy.py
Created October 25, 2017 22:33
Show Gist options
  • Save pbamotra/a3b8b2229aeefefe8293650dfe6ddd50 to your computer and use it in GitHub Desktop.
Save pbamotra/a3b8b2229aeefefe8293650dfe6ddd50 to your computer and use it in GitHub Desktop.
Inception for feature extraction, ANNoy for nearest-neighbor search
"""
Simple, hacked-up image similarity search using Tensorflow + the inception
CNN as feature extractor and ANNoy for nearest neighbor search.
Requires Tensorflow and ANNoy.
Based on gist code under
https://gist.github.com/david90/e98e1c41a0ebc580e5a9ce25ff6a972d
"""
from annoy import AnnoyIndex
import os
import sys
import tensorflow as tf
import tensorflow.python.platform
from tensorflow.python.platform import gfile
import numpy as np
def create_graph(model_path):
"""
create_graph loads the inception model to memory, should be called before
calling extract_features.
model_path: path to inception model in protobuf form.
"""
with gfile.FastGFile(model_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
def extract_features(image_paths, verbose=False):
"""
extract_features computed the inception bottleneck feature for a list of images
image_paths: array of image path
return: 2-d array in the shape of (len(image_paths), 2048)
"""
feature_dimension = 2048
features = np.empty((len(image_paths), feature_dimension))
with tf.Session() as sess:
flattened_tensor = sess.graph.get_tensor_by_name('pool_3:0')
for i, image_path in enumerate(image_paths):
if verbose:
print('Processing %s...' % (image_path))
if not gfile.Exists(image_path):
tf.logging.fatal('File does not exist %s', image)
image_data = gfile.FastGFile(image_path, 'rb').read()
feature = sess.run(flattened_tensor, {
'DecodeJpeg/contents:0': image_data
})
features[i, :] = np.squeeze(feature)
return features
if sys.argv[1] == "index":
print("[!] Creating a new image similarity search index.")
print("[!] Loading the inception CNN")
create_graph("./tensorflow_inception_graph.pb")
print("[!] Done.")
input_path = sys.argv[2]
files = os.listdir(input_path)
images = [ input_path + i for i in files ]
results = extract_features(images, True)
print("[!] Done extracting features, building search index")
ann_index = AnnoyIndex(len(results[0]))
for i in xrange(len(images)):
ann_index.add_item(i, results[i])
print("[!] Constructing trees")
ann_index.build(80)
print("[!] Saving the index to '%s'" % sys.argv[3])
ann_index.save(sys.argv[3])
print("[!] Saving the filelist to '%s'" % (sys.argv[3] + ".filelist"))
filelist = file(sys.argv[3] + ".filelist", "wt")
filelist.write("\n".join(images))
filelist.close()
elif sys.argv[1] == "search":
print("[!] Searching for similar images.")
print("[!] Loading the inception CNN")
create_graph("./tensorflow_inception_graph.pb")
print("[!] Done.")
input_path = sys.argv[2]
files = os.listdir(input_path)
images = [ input_path + i for i in files ]
results = extract_features(images, True)
ann_index = AnnoyIndex(len(results[0]))
ann_index.load(sys.argv[3])
filelist = file(sys.argv[3] + ".filelist", "rt").readlines()
for i in xrange(len(results)):
print("[!] Searching for similar images to '%s'" % images[i])
search_results = ann_index.get_nns_by_vector(results[i], 10,
include_distances=True)
for i in xrange(len(search_results[0])):
print("%f -> %d (%s)" % (search_results[1][i], search_results[0][i],
filelist[search_results[0][i]][:-1]))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment