Skip to content

Instantly share code, notes, and snippets.

@pbloem
Created August 30, 2017 07:10
Show Gist options
  • Save pbloem/4f899053c9815e27425d34d20623afa7 to your computer and use it in GitHub Desktop.
Save pbloem/4f899053c9815e27425d34d20623afa7 to your computer and use it in GitHub Desktop.
from datetime import datetime
import numpy as np
from keras import Input
import keras.backend as K
from keras.callbacks import TensorBoard
from keras.engine import Model
from keras.layers import LSTM, TimeDistributed, Dense, Reshape, Flatten, LeakyReLU, Lambda
from keras.optimizers import Adam, sgd
BATCH_SIZE = 512
TRAIN_VALIDATE_SPLIT = 0.1
EPOCHS = 50
OPTIMIZER = Adam(lr=0.01)
data = np.random.rand(50000, 2, 2)
target = np.sqrt(
np.square(data[:, 0, 0] - data[0:, 1, 0]) + # delta rd_x
np.square(data[:, 0, 1] - data[0:, 1, 1])) # delta rd_y
input = Input(name='Input', shape=(2, 2))
x = Flatten()(input)
x = Dense(16, activation='relu')(x)
x = Dense(1)(x)
model = Model(input, x)
model.compile(loss='mse', optimizer=OPTIMIZER)
model.summary()
history = model.fit(x=data,
y=target,
epochs=EPOCHS,
batch_size=BATCH_SIZE,
validation_split=TRAIN_VALIDATE_SPLIT).history
# print(history)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment