Last active
February 3, 2017 23:25
-
-
Save pbloem/580daa99ad98dc4a4d750fbf2175c32f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import scipy.misc as sm | |
import math | |
import random | |
import itertools as it | |
import matplotlib | |
import matplotlib.pyplot as pp | |
def combine(all, result, d=1, totalpoints = 0, totallogprob = 0): | |
""" | |
Computes the complete probability distribution over the total points. | |
Only feasible for small numbers of questions | |
:param all: | |
:param result: | |
:param d: | |
:param totalpoints: | |
:param totallogprob: | |
:return: | |
""" | |
if d > max(all.keys()): | |
if totalpoints not in result: | |
result[totalpoints] = 0.0 | |
result[totalpoints] += math.exp(totallogprob) | |
return | |
for points, prob in all[d].items(): | |
totalpoints += points | |
if prob <= 0.0: | |
return | |
totallogprob += math.log(prob) | |
combine(all, result, d + 1, totalpoints, totallogprob) | |
def sample(all, d = 1, totalpoints = 0): | |
if d > max(all.keys()): | |
return totalpoints | |
comb = [(points, all[d][points]) for points in all[d].keys()] | |
totalpoints += weighted_choice(comb) | |
return sample(all, d + 1, totalpoints) | |
def weighted_choice(choices): | |
total = sum(w for c, w in choices) | |
r = random.uniform(0, total) | |
upto = 0 | |
for c, w in choices: | |
if upto + w >= r: | |
return c | |
upto += w | |
assert False, "Shouldn't get here" | |
# Each q[x] maps a number of points to the probability that a random guesser gets that many points on question x | |
q = {} | |
q[1] = {1: 0.5, 0:0.5} | |
q[2] = {1: 1/3.0, 0: 2/3.0} | |
q[3] = {} | |
perms = math.factorial(6) / math.factorial(3) | |
q[3][3] = 1.0/perms | |
q[3][1] = 9.0/perms | |
q[3][0] = 1.0 - (q[3][3] + q[3][1]) | |
q[4] = {1:1/4.0, 0: 3/4.0} | |
q[5] = {1:1/3.0 * 1/2.0, 2: 5/6.0} | |
q[6] = {1:1/4.0, 0: 3/4.0} | |
q[7] = {1:1/4.0, 0: 3/4.0} | |
q[8] = {1:1/1000.0, 0:999/1000.0} | |
q[9] = {} | |
q[9][3] = 1/64.0 | |
q[9][1.5] = 6/64.0 | |
q[9][0] = (64-7)/64.0 | |
q[10] = {} | |
q[10][3] = 1/64.0 | |
q[10][1.5] = 6/64.0 | |
q[10][0] = (64-7)/64.0 | |
q[11] = {} | |
lst = [0, 1, 2, 3, 4, 5, 6, 7, 8] | |
tally = {0:0.0, 1:0.0, 2:0.0, 3:0.0, 4:0.0, 5:0.0, 6:0.0} | |
n = 0 | |
for l in it.permutations(lst, 6): | |
match = 0 | |
n += 1 | |
for i, j in enumerate(l): | |
if i == j: | |
match += 1 | |
tally[match] += 1 | |
for key, value in tally.items(): | |
q[11][key/2.0] = value / n | |
q[12] = {} | |
q[12][3] = 1/64.0 | |
q[12][1.5] = 6/64.0 | |
q[12][0] = (64-7)/64.0 | |
q[13] = {} | |
q[13][1] = 1.0/7.0 | |
q[13][0] = 6.0/7.0 | |
q[14] = {} | |
q[14][3] = 1/32.0 | |
q[14][2] = 3/32.0 | |
q[14][1] = 3/32.0 | |
q[14][0.5] = 6/32.0 | |
q[14][0] = (64-13)/64.0 | |
q[15] = {} | |
q[15][3] = 1.0/4.0 | |
q[15][0] = 3.0/4.0 | |
q[16] = {} | |
q[16][3] = 1.0/6.0 | |
q[16][0] = 5.0/4.0 | |
q[17] = {} | |
q[17][3.0] = 4.0/10000.0 | |
q[17][2.25] = ((36 + 16) * 2)/10000.0 | |
q[17][0.75] = ((64 * 9 + 81 * 8 * 2) * 2)/10000.0 | |
q[17][0.0] = (9 * 8 * 8 * 9)/10000.0 | |
q[17][1.5] = 1.0 - (q[17][0.0] + q[17][0.75] + q[17][2.25] + q[17][3.0]) | |
q[18] = {} | |
q[18][3] = 1/128.0 | |
q[18][2] = 7/128.0 | |
q[18][1] = 21/128.0 | |
q[18][0] = 1.0 - (q[18][1] + q[18][2] + q[18][3]) | |
q[19] = {} | |
q[19][3] = 1.0/4.0 | |
q[19][0] = 3.0/4.0 | |
q[20] = {} | |
q[20][3] = 1.0/5.0 | |
q[20][0] = 4.0/5.0 | |
q[21] = {} | |
q[21][3] = 1/128.0 | |
q[21][2] = 7/128.0 | |
q[21][1] = 21/128.0 | |
q[21][0] = 1.0 - (q[18][1] + q[18][2] + q[18][3]) | |
q[22] = {1:1/20.0, 0:39/40.0} | |
q[23] = {} | |
lst = [0, 1, 2, 3, 4, 5, 6, 7] | |
tally = {0:0.0, 1:0.0, 2:0.0, 3:0.0, 4:0.0} | |
n = 0 | |
for i in range(9): | |
for l in it.combinations(lst, i): | |
correct = 0; | |
for v in l: | |
if v >= 0 and v <= 3: | |
correct += 1 | |
else: | |
correct -= 1 | |
correct = max(0, correct) | |
tally[correct] += 1 | |
n += 1 | |
for key, value in tally.items(): | |
q[23][(key/4.0) * 3.0] = value / n | |
q[24] = {} | |
lst = [0, 1, 2, 3, 4, 5] | |
tally = {0:0.0, 1:0.0, 2:0.0, 3:0.0, 4:0.0, 5:0.0, 6:0.0} | |
n = 0 | |
for l in it.permutations(lst): | |
correct = 0; | |
for i, j in enumerate(l): | |
if i == j: | |
correct += 1 | |
tally[correct] += 1 | |
n += 1.0 | |
for key, value in tally.items(): | |
q[24][key] = value / n | |
q[25] = {6:1/25.0, 0:24/25.0} | |
q[26] = {} | |
q[26][6] = 1/64.0 | |
q[26][3] = 2/64.0 | |
q[26][1.5] = 12/64.0 | |
q[26][0] = (64-15)/64.0 | |
q[27] = {} | |
q[27][6] = 1/6.0 | |
q[27][0] = 5/6.0 | |
q[28] = {0:1.0} | |
q[29] = {} | |
q[29][6] = 1/512.0 | |
q[29][4] = 8/512.0 | |
q[29][2] = 31/512.0 | |
q[29][0] = 1.0 - (q[29][6] + q[29][4] + q[29][2]) | |
q[30] = {0:1.0} | |
q[31] = {0:1.0} | |
q[32] = {0:1.0} | |
print('Computed per question probabilities. Combining by sampling.') | |
res = [] | |
for i in range(1000000): | |
res.append(sample(q)) | |
if i % 100000 == 0: | |
print(i) | |
pp.hist(res, normed=True) | |
pp.xlim([0, 100]) | |
pp.title('mean points: {}'.format(sum(res)/len(res))) | |
pp.savefig('histogram.pdf') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment