Run like this from the langroid repo:
uv run examples/basic/chat-search.py -m groq/deepseek-r1-distill-llama-70bExample screenshot:
| <!DOCTYPE html> | |
| <html lang="en"> | |
| <head> | |
| <meta charset="UTF-8"> | |
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
| <meta http-equiv="refresh" content="2"> | |
| <title>LLM-Agent - Langroid Task Log</title> | |
| <style> | |
| body { | |
| background-color: #1e1e1e; |
Run like this from the langroid repo:
uv run examples/basic/chat-search.py -m groq/deepseek-r1-distill-llama-70bExample screenshot:
Run like this from the langroid-examples repo after setting up the env
uv run examples/basic/tool-extract-short-example.py -m ollama/mistral-smallSample output:
Install Langroid and run this doc-chat
example script from the examples/ folder:
uv run examples/docqa/chat.py https://arxiv.org/pdf/2501.12948
Example output:
| # Simple example of getting bsky data via `atproto` python client | |
| # | |
| # First install: atproto, python-dotenv | |
| # See python client docs here: | |
| # https://github.com/MarshalX/atproto | |
| # | |
| from atproto import Client, IdResolver | |
| import os |
| // Zed settings | |
| // | |
| // For information on how to configure Zed, see the Zed | |
| // documentation: https://zed.dev/docs/configuring-zed | |
| // | |
| // To see all of Zed's default settings without changing your | |
| // custom settings, run the `open default settings` command | |
| // from the command palette or from `Zed` application menu. | |
| { | |
| // The settings for slash commands. |
| from typing import Any, Callable, cast, Optional, Union | |
| import textwrap | |
| import chainlit as cl | |
| from datetime import datetime | |
| from chainlit.sync import run_sync | |
| from chainlit.message import AskMessageBase, AskUserMessage, MessageStepType | |
| from chainlit.types import AskSpec | |
| from chainlit.step import StepDict | |
| from chainlit.config import config | |
| from chainlit.telemetry import trace_event |
| /Users/pchalasani/Git/langroid-examples/.venv/lib/python3.11/site-packages/langroid/parsing/docu │ | |
| │ ment_parser.py:301 in iterate_pages │ | |
| │ │ | |
| │ 298 │ def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]: # type: ignore │ | |
| │ 299 │ │ from unstructured.partition.pdf import partition_pdf │ | |
| │ 300 │ │ │ | |
| │ ❱ 301 │ │ elements = partition_pdf(file=self.doc_bytes, include_page_breaks=True) │ | |
| │ 302 │ │ for i, el in enumerate(elements): │ | |
| │ 303 │ │ │ yield i, el │ | |
| │ 304 │ |
| import blankly | |
| from blankly import StrategyState | |
| import numpy as np | |
| def trade(state: StrategyState): | |
| ''' | |
| Example of how to decide a trade based on ALL assets | |
| ''' | |
| symbols = state.symbol |
| ''' | |
| Example of using blankly to decide trade based on all asset prices using a global state-list | |
| ''' | |
| import blankly | |
| import numpy as np | |
| # global list of StrategyStates, one per symbol (price_event) | |
| states = [] | |
| def trade(): |