Created
June 5, 2020 08:43
-
-
Save pdparker/86a961a2123ccc5228dc9fb7d15889f4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
# Replication of Simmons #### | |
set.seed(42) | |
reps <- 1500 | |
n <- 40 | |
sim <- matrix(NA, nrow = reps, ncol = 4) | |
colnames(sim) <- c("vanilla_est", "vanilla_p", "covariate_est", "covariate_p") | |
for (i in 1:reps){ | |
d = data_frame( | |
treatment = sample(0:1, size = n, replace = TRUE), | |
gender = sample(c(-.5,.5), size = n, replace = TRUE), | |
out = rnorm(n = n) # + .5*gender | |
) | |
m_vanilla = lm(out ~ treatment, data = d) | |
sim[i, 1:2] = summary(m_vanilla) %>% `[`("coefficients") %>% `[[`(1) %>% `[`(2,c(1,4)) | |
m_cov = lm(out ~ treatment*gender, data = d) | |
sim[i, 3] = summary(m_cov) %>% `[`("coefficients") %>% `[[`(1) %>% `[`(2,1) | |
tmp = summary(m_cov) %>% `[`("coefficients") %>% `[[`(1) | |
sim[i, 4] = min(tmp[c(2,4),4]) | |
} | |
sim %>% as_data_frame() %>% | |
summarise( | |
eff_vanilla = sum(vanilla_p < .05)/reps*100, | |
eff_covariate = sum(covariate_p < .05)/reps*100, | |
diff = mean(vanilla_est - covariate_est) | |
) | |
plot(density(sim[,1]-sim[,3]), type='l') | |
# Extension of Simmons: Ommitted Variable Bias example #### | |
set.seed(42) | |
reps <- 1500 | |
n <- 40 | |
sim <- matrix(NA, nrow = reps, ncol = 5) | |
colnames(sim) <- c("vanilla_est", "vanilla_p", "covariate_est", "covariate_p_no_int","covariate_p_int") | |
for (i in 1:reps){ | |
d = data_frame( | |
gender = sample(c(-.5,.5), size = n, replace = TRUE), | |
treatment = ifelse(gender == .5, sample(0:1, size = n, replace = TRUE, prob = c(.6,.4)), | |
sample(0:1, size = n, replace = TRUE, prob = c(.4,.6)) | |
), | |
out = rnorm(n = n) + .8*gender | |
) | |
m_vanilla = lm(out ~ treatment, data = d) | |
sim[i, 1:2] = summary(m_vanilla) %>% `[`("coefficients") %>% `[[`(1) %>% `[`(2,c(1,4)) | |
m_cov = lm(out ~ treatment*gender, data = d) | |
sim[i, 3:4] = summary(m_cov) %>% `[`("coefficients") %>% `[[`(1) %>% `[`(2,c(1,4)) | |
tmp = summary(m_cov) %>% `[`("coefficients") %>% `[[`(1) | |
sim[i, 5] = min(tmp[c(2,4),4]) | |
} | |
sim %>% as_data_frame() %>% | |
summarise( | |
eff_vanilla = sum(vanilla_p < .05)/reps*100, | |
eff_covariate_no_int = sum(covariate_p_no_int < .05)/reps*100, | |
eff_covariate_int = sum(covariate_p_int < .05)/reps*100, | |
diff = mean(vanilla_est - covariate_est) | |
) | |
plot(density(sim[,1]-sim[,3]), type='l') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment