Created
October 22, 2015 06:57
-
-
Save peace098beat/6e11b743a11ac97dee17 to your computer and use it in GitHub Desktop.
[MLP] Theanoを使ったMLP
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| """ | |
| http://deeplearning.net/tutorial/logreg.html | |
| """ | |
| import theano | |
| import theano.tensor as T | |
| import numpy | |
| class LogisticRegression(object): | |
| """Multi-class Logistic Regression Class | |
| The logistic regression is fully described by a weight matrix :math:`W` | |
| and bias vector :math:`b`. Classification is done by projecting data | |
| points onto a set of hyperplanes, the distance to which is used to | |
| determine a class membership probability. | |
| """ | |
| def __init__(self, input, n_in, n_out): | |
| """ Initialize the parameters of the logistic regression | |
| :type input: theano.tensor.TensorType | |
| :param input: symbolic variable that describes the input of the | |
| architecture (one minibatch) | |
| :type n_in: int | |
| :param n_in: number of input units, the dimension of the space in | |
| which the datapoints lie | |
| :type n_out: int | |
| :param n_out: number of output units, the dimension of the space in | |
| which the labels lie | |
| """ | |
| # start-snippet-1 | |
| # initialize with 0 the weights W as a matrix of shape (n_in, n_out) | |
| self.W = theano.shared( | |
| value=numpy.zeros( | |
| (n_in, n_out), | |
| dtype=theano.config.floatX | |
| ), | |
| name='W', | |
| borrow=True | |
| ) | |
| # initialize the biases b as a vector of n_out 0s | |
| self.b = theano.shared( | |
| value=numpy.zeros( | |
| (n_out,), | |
| dtype=theano.config.floatX | |
| ), | |
| name='b', | |
| borrow=True | |
| ) | |
| # symbolic expression for computing the matrix of class-membership | |
| # probabilities | |
| # Where: | |
| # W is a matrix where column-k represent the separation hyperplane for | |
| # class-k | |
| # x is a matrix where row-j represents input training sample-j | |
| # b is a vector where element-k represent the free parameter of | |
| # hyperplane-k | |
| self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b) | |
| # symbolic description of how to compute prediction as class whose | |
| # probability is maximal | |
| self.y_pred = T.argmax(self.p_y_given_x, axis=1) | |
| # end-snippet-1 | |
| # parameters of the model | |
| self.params = [self.W, self.b] | |
| # keep track of model input | |
| self.input = input | |
| def negative_log_likelihood(self, y): | |
| """Return the mean of the negative log-likelihood of the prediction | |
| of this model under a given target distribution. | |
| .. math:: | |
| \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = | |
| \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} | |
| \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ | |
| \ell (\theta=\{W,b\}, \mathcal{D}) | |
| :type y: theano.tensor.TensorType | |
| :param y: corresponds to a vector that gives for each example the | |
| correct label | |
| Note: we use the mean instead of the sum so that | |
| the learning rate is less dependent on the batch size | |
| """ | |
| # start-snippet-2 | |
| # y.shape[0] is (symbolically) the number of rows in y, i.e., | |
| # number of examples (call it n) in the minibatch | |
| # T.arange(y.shape[0]) is a symbolic vector which will contain | |
| # [0,1,2,... n-1] T.log(self.p_y_given_x) is a matrix of | |
| # Log-Probabilities (call it LP) with one row per example and | |
| # one column per class LP[T.arange(y.shape[0]),y] is a vector | |
| # v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., | |
| # LP[n-1,y[n-1]]] and T.mean(LP[T.arange(y.shape[0]),y]) is | |
| # the mean (across minibatch examples) of the elements in v, | |
| # i.e., the mean log-likelihood across the minibatch. | |
| return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]) | |
| # end-snippet-2 | |
| def errors(self, y): | |
| """Return a float representing the number of errors in the minibatch | |
| over the total number of examples of the minibatch ; zero one | |
| loss over the size of the minibatch | |
| :type y: theano.tensor.TensorType | |
| :param y: corresponds to a vector that gives for each example the | |
| correct label | |
| """ | |
| # check if y has same dimension of y_pred | |
| if y.ndim != self.y_pred.ndim: | |
| raise TypeError( | |
| 'y should have the same shape as self.y_pred', | |
| ('y', y.type, 'y_pred', self.y_pred.type) | |
| ) | |
| # check if y is of the correct datatype | |
| if y.dtype.startswith('int'): | |
| # the T.neq operator returns a vector of 0s and 1s, where 1 | |
| # represents a mistake in prediction | |
| return T.mean(T.neq(self.y_pred, y)) | |
| else: | |
| raise NotImplementedError() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| """ | |
| This tutorial introduces logistic regression using Theano and stochastic | |
| gradient descent. | |
| Logistic regression is a probabilistic, linear classifier. It is parametrized | |
| by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is | |
| done by projecting data points onto a set of hyperplanes, the distance to | |
| which is used to determine a class membership probability. | |
| Mathematically, this can be written as: | |
| .. math:: | |
| P(Y=i|x, W,b) &= softmax_i(W x + b) \\ | |
| &= \frac {e^{W_i x + b_i}} {\sum_j e^{W_j x + b_j}} | |
| The output of the model or prediction is then done by taking the argmax of | |
| the vector whose i'th element is P(Y=i|x). | |
| .. math:: | |
| y_{pred} = argmax_i P(Y=i|x,W,b) | |
| This tutorial presents a stochastic gradient descent optimization method | |
| suitable for large datasets. | |
| References: | |
| - textbooks: "Pattern Recognition and Machine Learning" - | |
| Christopher M. Bishop, section 4.3.2 | |
| """ | |
| __docformat__ = 'restructedtext en' | |
| import cPickle | |
| import gzip | |
| import os | |
| import sys | |
| import timeit | |
| import numpy | |
| import theano | |
| import theano.tensor as T | |
| class LogisticRegression(object): | |
| """Multi-class Logistic Regression Class | |
| The logistic regression is fully described by a weight matrix :math:`W` | |
| and bias vector :math:`b`. Classification is done by projecting data | |
| points onto a set of hyperplanes, the distance to which is used to | |
| determine a class membership probability. | |
| """ | |
| def __init__(self, input, n_in, n_out): | |
| """ Initialize the parameters of the logistic regression | |
| :type input: theano.tensor.TensorType | |
| :param input: symbolic variable that describes the input of the | |
| architecture (one minibatch) | |
| :type n_in: int | |
| :param n_in: number of input units, the dimension of the space in | |
| which the datapoints lie | |
| :type n_out: int | |
| :param n_out: number of output units, the dimension of the space in | |
| which the labels lie | |
| """ | |
| # start-snippet-1 | |
| # initialize with 0 the weights W as a matrix of shape (n_in, n_out) | |
| self.W = theano.shared( | |
| value=numpy.zeros( | |
| (n_in, n_out), | |
| dtype=theano.config.floatX | |
| ), | |
| name='W', | |
| borrow=True | |
| ) | |
| # initialize the biases b as a vector of n_out 0s | |
| self.b = theano.shared( | |
| value=numpy.zeros( | |
| (n_out,), | |
| dtype=theano.config.floatX | |
| ), | |
| name='b', | |
| borrow=True | |
| ) | |
| # symbolic expression for computing the matrix of class-membership | |
| # probabilities | |
| # Where: | |
| # W is a matrix where column-k represent the separation hyperplane for | |
| # class-k | |
| # x is a matrix where row-j represents input training sample-j | |
| # b is a vector where element-k represent the free parameter of | |
| # hyperplane-k | |
| self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b) | |
| # symbolic description of how to compute prediction as class whose | |
| # probability is maximal | |
| self.y_pred = T.argmax(self.p_y_given_x, axis=1) | |
| # end-snippet-1 | |
| # parameters of the model | |
| self.params = [self.W, self.b] | |
| # keep track of model input | |
| self.input = input | |
| def negative_log_likelihood(self, y): | |
| """Return the mean of the negative log-likelihood of the prediction | |
| of this model under a given target distribution. | |
| .. math:: | |
| \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = | |
| \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} | |
| \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ | |
| \ell (\theta=\{W,b\}, \mathcal{D}) | |
| :type y: theano.tensor.TensorType | |
| :param y: corresponds to a vector that gives for each example the | |
| correct label | |
| Note: we use the mean instead of the sum so that | |
| the learning rate is less dependent on the batch size | |
| """ | |
| # start-snippet-2 | |
| # y.shape[0] is (symbolically) the number of rows in y, i.e., | |
| # number of examples (call it n) in the minibatch | |
| # T.arange(y.shape[0]) is a symbolic vector which will contain | |
| # [0,1,2,... n-1] T.log(self.p_y_given_x) is a matrix of | |
| # Log-Probabilities (call it LP) with one row per example and | |
| # one column per class LP[T.arange(y.shape[0]),y] is a vector | |
| # v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., | |
| # LP[n-1,y[n-1]]] and T.mean(LP[T.arange(y.shape[0]),y]) is | |
| # the mean (across minibatch examples) of the elements in v, | |
| # i.e., the mean log-likelihood across the minibatch. | |
| return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]) | |
| # end-snippet-2 | |
| def errors(self, y): | |
| """Return a float representing the number of errors in the minibatch | |
| over the total number of examples of the minibatch ; zero one | |
| loss over the size of the minibatch | |
| :type y: theano.tensor.TensorType | |
| :param y: corresponds to a vector that gives for each example the | |
| correct label | |
| """ | |
| # check if y has same dimension of y_pred | |
| if y.ndim != self.y_pred.ndim: | |
| raise TypeError( | |
| 'y should have the same shape as self.y_pred', | |
| ('y', y.type, 'y_pred', self.y_pred.type) | |
| ) | |
| # check if y is of the correct datatype | |
| if y.dtype.startswith('int'): | |
| # the T.neq operator returns a vector of 0s and 1s, where 1 | |
| # represents a mistake in prediction | |
| return T.mean(T.neq(self.y_pred, y)) | |
| else: | |
| raise NotImplementedError() | |
| def load_data(dataset): | |
| ''' Loads the dataset | |
| :type dataset: string | |
| :param dataset: the path to the dataset (here MNIST) | |
| ''' | |
| ############# | |
| # LOAD DATA # | |
| ############# | |
| # Download the MNIST dataset if it is not present | |
| data_dir, data_file = os.path.split(dataset) | |
| if data_dir == "" and not os.path.isfile(dataset): | |
| # Check if dataset is in the data directory. | |
| new_path = os.path.join( | |
| os.path.split(__file__)[0], | |
| "..", | |
| "data", | |
| dataset | |
| ) | |
| if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz': | |
| dataset = new_path | |
| if (not os.path.isfile(dataset)) and data_file == 'mnist.pkl.gz': | |
| import urllib | |
| origin = ( | |
| 'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz' | |
| ) | |
| print 'Downloading data from %s' % origin | |
| urllib.urlretrieve(origin, dataset) | |
| print '... loading data' | |
| # Load the dataset | |
| f = gzip.open(dataset, 'rb') | |
| train_set, valid_set, test_set = cPickle.load(f) | |
| f.close() | |
| #train_set, valid_set, test_set format: tuple(input, target) | |
| #input is an numpy.ndarray of 2 dimensions (a matrix) | |
| #witch row's correspond to an example. target is a | |
| #numpy.ndarray of 1 dimensions (vector)) that have the same length as | |
| #the number of rows in the input. It should give the target | |
| #target to the example with the same index in the input. | |
| def shared_dataset(data_xy, borrow=True): | |
| """ Function that loads the dataset into shared variables | |
| The reason we store our dataset in shared variables is to allow | |
| Theano to copy it into the GPU memory (when code is run on GPU). | |
| Since copying data into the GPU is slow, copying a minibatch everytime | |
| is needed (the default behaviour if the data is not in a shared | |
| variable) would lead to a large decrease in performance. | |
| """ | |
| data_x, data_y = data_xy | |
| shared_x = theano.shared(numpy.asarray(data_x, | |
| dtype=theano.config.floatX), | |
| borrow=borrow) | |
| shared_y = theano.shared(numpy.asarray(data_y, | |
| dtype=theano.config.floatX), | |
| borrow=borrow) | |
| # When storing data on the GPU it has to be stored as floats | |
| # therefore we will store the labels as ``floatX`` as well | |
| # (``shared_y`` does exactly that). But during our computations | |
| # we need them as ints (we use labels as index, and if they are | |
| # floats it doesn't make sense) therefore instead of returning | |
| # ``shared_y`` we will have to cast it to int. This little hack | |
| # lets ous get around this issue | |
| return shared_x, T.cast(shared_y, 'int32') | |
| test_set_x, test_set_y = shared_dataset(test_set) | |
| valid_set_x, valid_set_y = shared_dataset(valid_set) | |
| train_set_x, train_set_y = shared_dataset(train_set) | |
| rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y), | |
| (test_set_x, test_set_y)] | |
| return rval | |
| def sgd_optimization_mnist(learning_rate=0.13, n_epochs=1000, | |
| dataset='mnist.pkl.gz', | |
| batch_size=600): | |
| """ | |
| Demonstrate stochastic gradient descent optimization of a log-linear | |
| model | |
| This is demonstrated on MNIST. | |
| :type learning_rate: float | |
| :param learning_rate: learning rate used (factor for the stochastic | |
| gradient) | |
| :type n_epochs: int | |
| :param n_epochs: maximal number of epochs to run the optimizer | |
| :type dataset: string | |
| :param dataset: the path of the MNIST dataset file from | |
| http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz | |
| """ | |
| datasets = load_data(dataset) | |
| train_set_x, train_set_y = datasets[0] | |
| valid_set_x, valid_set_y = datasets[1] | |
| test_set_x, test_set_y = datasets[2] | |
| # compute number of minibatches for training, validation and testing | |
| n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size | |
| n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size | |
| n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size | |
| ###################### | |
| # BUILD ACTUAL MODEL # | |
| ###################### | |
| print '... building the model' | |
| # allocate symbolic variables for the data | |
| index = T.lscalar() # index to a [mini]batch | |
| # generate symbolic variables for input (x and y represent a | |
| # minibatch) | |
| x = T.matrix('x') # data, presented as rasterized images | |
| y = T.ivector('y') # labels, presented as 1D vector of [int] labels | |
| # construct the logistic regression class | |
| # Each MNIST image has size 28*28 | |
| classifier = LogisticRegression(input=x, n_in=28 * 28, n_out=10) | |
| # the cost we minimize during training is the negative log likelihood of | |
| # the model in symbolic format | |
| cost = classifier.negative_log_likelihood(y) | |
| # compiling a Theano function that computes the mistakes that are made by | |
| # the model on a minibatch | |
| test_model = theano.function( | |
| inputs=[index], | |
| outputs=classifier.errors(y), | |
| givens={ | |
| x: test_set_x[index * batch_size: (index + 1) * batch_size], | |
| y: test_set_y[index * batch_size: (index + 1) * batch_size] | |
| } | |
| ) | |
| validate_model = theano.function( | |
| inputs=[index], | |
| outputs=classifier.errors(y), | |
| givens={ | |
| x: valid_set_x[index * batch_size: (index + 1) * batch_size], | |
| y: valid_set_y[index * batch_size: (index + 1) * batch_size] | |
| } | |
| ) | |
| # compute the gradient of cost with respect to theta = (W,b) | |
| g_W = T.grad(cost=cost, wrt=classifier.W) | |
| g_b = T.grad(cost=cost, wrt=classifier.b) | |
| # start-snippet-3 | |
| # specify how to update the parameters of the model as a list of | |
| # (variable, update expression) pairs. | |
| updates = [(classifier.W, classifier.W - learning_rate * g_W), | |
| (classifier.b, classifier.b - learning_rate * g_b)] | |
| # compiling a Theano function `train_model` that returns the cost, but in | |
| # the same time updates the parameter of the model based on the rules | |
| # defined in `updates` | |
| train_model = theano.function( | |
| inputs=[index], | |
| outputs=cost, | |
| updates=updates, | |
| givens={ | |
| x: train_set_x[index * batch_size: (index + 1) * batch_size], | |
| y: train_set_y[index * batch_size: (index + 1) * batch_size] | |
| } | |
| ) | |
| # end-snippet-3 | |
| ############### | |
| # TRAIN MODEL # | |
| ############### | |
| print '... training the model' | |
| # early-stopping parameters | |
| patience = 5000 # look as this many examples regardless | |
| patience_increase = 2 # wait this much longer when a new best is | |
| # found | |
| improvement_threshold = 0.995 # a relative improvement of this much is | |
| # considered significant | |
| validation_frequency = min(n_train_batches, patience / 2) | |
| # go through this many | |
| # minibatche before checking the network | |
| # on the validation set; in this case we | |
| # check every epoch | |
| best_validation_loss = numpy.inf | |
| test_score = 0. | |
| start_time = timeit.default_timer() | |
| done_looping = False | |
| epoch = 0 | |
| while (epoch < n_epochs) and (not done_looping): | |
| epoch = epoch + 1 | |
| for minibatch_index in xrange(n_train_batches): | |
| minibatch_avg_cost = train_model(minibatch_index) | |
| # iteration number | |
| iter = (epoch - 1) * n_train_batches + minibatch_index | |
| if (iter + 1) % validation_frequency == 0: | |
| # compute zero-one loss on validation set | |
| validation_losses = [validate_model(i) | |
| for i in xrange(n_valid_batches)] | |
| this_validation_loss = numpy.mean(validation_losses) | |
| print( | |
| 'epoch %i, minibatch %i/%i, validation error %f %%' % | |
| ( | |
| epoch, | |
| minibatch_index + 1, | |
| n_train_batches, | |
| this_validation_loss * 100. | |
| ) | |
| ) | |
| # if we got the best validation score until now | |
| if this_validation_loss < best_validation_loss: | |
| #improve patience if loss improvement is good enough | |
| if this_validation_loss < best_validation_loss * \ | |
| improvement_threshold: | |
| patience = max(patience, iter * patience_increase) | |
| best_validation_loss = this_validation_loss | |
| # test it on the test set | |
| test_losses = [test_model(i) | |
| for i in xrange(n_test_batches)] | |
| test_score = numpy.mean(test_losses) | |
| print( | |
| ( | |
| ' epoch %i, minibatch %i/%i, test error of' | |
| ' best model %f %%' | |
| ) % | |
| ( | |
| epoch, | |
| minibatch_index + 1, | |
| n_train_batches, | |
| test_score * 100. | |
| ) | |
| ) | |
| # save the best model | |
| with open('best_model.pkl', 'w') as f: | |
| cPickle.dump(classifier, f) | |
| if patience <= iter: | |
| done_looping = True | |
| break | |
| end_time = timeit.default_timer() | |
| print( | |
| ( | |
| 'Optimization complete with best validation score of %f %%,' | |
| 'with test performance %f %%' | |
| ) | |
| % (best_validation_loss * 100., test_score * 100.) | |
| ) | |
| print 'The code run for %d epochs, with %f epochs/sec' % ( | |
| epoch, 1. * epoch / (end_time - start_time)) | |
| print >> sys.stderr, ('The code for file ' + | |
| os.path.split(__file__)[1] + | |
| ' ran for %.1fs' % ((end_time - start_time))) | |
| def predict(): | |
| """ | |
| An example of how to load a trained model and use it | |
| to predict labels. | |
| """ | |
| # load the saved model | |
| classifier = cPickle.load(open('best_model.pkl')) | |
| # compile a predictor function | |
| predict_model = theano.function( | |
| inputs=[classifier.input], | |
| outputs=classifier.y_pred) | |
| # We can test it on some examples from test test | |
| dataset='mnist.pkl.gz' | |
| datasets = load_data(dataset) | |
| test_set_x, test_set_y = datasets[2] | |
| test_set_x = test_set_x.get_value() | |
| predicted_values = predict_model(test_set_x[:10]) | |
| print ("Predicted values for the first 10 examples in test set:") | |
| print predicted_values | |
| if __name__ == '__main__': | |
| sgd_optimization_mnist() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #! coding:utf-8 | |
| """ | |
| Going from logistic regression to MLP | |
| http://deeplearning.net/tutorial/mlp.html | |
| """ | |
| import os | |
| import sys | |
| import timeit | |
| import theano | |
| import theano.tensor as T | |
| import numpy | |
| from LogisticRegression import LogisticRegression | |
| from logreg import load_data | |
| class HiddenLayer(object): | |
| def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh): | |
| """ | |
| Typical hidden Layer of a MLP: units are fully-connected and have | |
| sigmoidal activation function. Weight matrix W is of shape(n_in, n_out) | |
| and the bias vectior b is of shape(n_out,). | |
| NOTE : The nonlinearity used here is tanh | |
| Hidden unit activation is given by : tanh(dot(input, W) + b) | |
| :param rng: a random number generator used to initiialize weight | |
| :param input: a symbolic tensor of shape(n_examples, n_in) | |
| :param n_in: dimensionality of input | |
| :param n_out: number of hidden units | |
| :param W: | |
| :param b: | |
| :param activation: | |
| :return: | |
| """ | |
| self.input = input | |
| """ | |
| 'W' is initialized with 'W_values which is uniformely sampled | |
| from sqrt(-6./(n_in + n_hidden)) and sqrt(6./(n_in + n_hidden)) | |
| for tanh activation function | |
| the output of uniform if converted using asarray to dtype | |
| theano.config.floatX so that the code is runable on GPU | |
| """ | |
| if W is None: | |
| W_values = numpy.asarray( | |
| rng.uniform( | |
| low=-numpy.sqrt(6. / (n_in + n_out)), | |
| high=numpy.sqrt(6. / (n_in + n_out)), | |
| size=(n_in, n_out) | |
| ), | |
| dtype=theano.config.floatX | |
| ) | |
| if activation == theano.tensor.nnet.sigmoid: | |
| W_values *= 4 | |
| W = theano.shared( | |
| value=W_values, | |
| name='W', | |
| borrow=True) | |
| if b is None: | |
| b_values = numpy.zeros((n_out,), dtype=theano.config.floatX) | |
| b = theano.shared( | |
| value=b_values, | |
| name='b', | |
| borrow=True | |
| ) | |
| self.W = W | |
| self.b = b | |
| lin_output = T.dot(input, self.W) + self.b | |
| self.output = ( | |
| lin_output if activation is None | |
| else activation(lin_output) | |
| ) | |
| self.params = [self.W, self.b] | |
| class MLP(object): | |
| """Multi-Layer Perceptron Class | |
| A multilayer perceptron is a feedforward artificial neural network model | |
| that has one layer or more of hidden units and nonlinear activations. | |
| """ | |
| def __init__(self, rng, input, n_in, n_hidden, n_out): | |
| """Initialize the parameters for the multilayer Perceptron | |
| :param rng: | |
| :param input: symbolic variable that describes the input of the architecture(one minibatch) | |
| :param n_in: | |
| :param n_hidden: | |
| :param n_out: | |
| """ | |
| self.hiddenLayer = HiddenLayer( | |
| rng=rng, | |
| input=input, | |
| n_in=n_in, | |
| n_out=n_hidden, | |
| activation=T.tanh | |
| ) | |
| # The Logistic regression Layer gets as input the hidden units of the hidden layer | |
| self.logRegressionLayer = LogisticRegression( | |
| input=self.hiddenLayer.output, | |
| n_in=n_hidden, | |
| n_out=n_out | |
| ) | |
| # L1 norm | |
| self.L1 = ( | |
| abs(self.hiddenLayer.W).sum() | |
| + abs(self.logRegressionLayer.W).sum() | |
| ) | |
| # L2 norm | |
| self.L2_sqr = ( | |
| (self.hiddenLayer.W ** 2).sum() | |
| + (self.logRegressionLayer.W ** 2).sum() | |
| ) | |
| # negative log likelihood of the MLP is given by the negative | |
| # log likelihood of the output of the model, computed in the | |
| # logistic regression layer | |
| self.negative_log_likelihood = ( | |
| self.logRegressionLayer.negative_log_likelihood | |
| ) | |
| # same holds for the function computing the number of errors | |
| self.errors = self.logRegressionLayer.errors | |
| # the parameters of the model are the paramters of the two layer it is made out of | |
| self.params = self.hiddenLayer.params + self.logRegressionLayer.params | |
| # keep track of model input | |
| self.input = input | |
| def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000, dataset='mnist.pkl.gz', batch_size=20, | |
| n_hidden=500): | |
| """Demostrate stochastic gradient descent optimization for a multilayer perceptron | |
| :param learning_rate: | |
| :param L1_reg: | |
| :param L2_reg: | |
| :param n_epochs: | |
| :param dataset: | |
| :param batch_size: | |
| :param n_hidden: | |
| :return: | |
| """ | |
| datasets = load_data(dataset) | |
| train_set_x, train_set_y = datasets[0] | |
| valid_set_x, valid_set_y = datasets[1] | |
| test_set_x, test_set_y = datasets[2] | |
| # compute number of minibatches for traning , validationi and testing | |
| n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size | |
| n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size | |
| n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size | |
| # ================== | |
| # BUILD ACTUAL MODEL | |
| # ================== | |
| print '... building the model' | |
| # allocate symbolic variables for the data | |
| index = T.lscalar() | |
| x = T.matrix('x') | |
| y = T.ivector('y') | |
| rng = numpy.random.RandomState(1234) | |
| print rng | |
| classifier = MLP( | |
| rng=rng, | |
| input=x, | |
| n_in=28 * 28, | |
| n_hidden=n_hidden, | |
| n_out=10 | |
| ) | |
| # 誤差関数 | |
| cost = ( | |
| classifier.negative_log_likelihood(y) | |
| + L1_reg * classifier.L1 | |
| + L2_reg * classifier.L2_sqr | |
| ) | |
| # Compiling a Theano function | |
| test_model = theano.function( | |
| inputs=[index], | |
| outputs=classifier.errors(y), | |
| givens={ | |
| x: test_set_x[index * batch_size:(index + 1) * batch_size], | |
| y: test_set_y[index * batch_size:(index + 1) * batch_size] | |
| } | |
| ) | |
| validate_model = theano.function( | |
| inputs=[index], | |
| outputs=classifier.errors(y), | |
| givens={ | |
| x: valid_set_x[index * batch_size:(index + 1) * batch_size], | |
| y: valid_set_y[index * batch_size:(index + 1) * batch_size] | |
| } | |
| ) | |
| gparams = [T.grad(cost, param) for param in classifier.params] | |
| updates = [ | |
| (param, param - learning_rate * gparam) | |
| for param, gparam in zip(classifier.params, gparams) | |
| ] | |
| train_model = theano.function( | |
| inputs=[index], | |
| outputs=cost, | |
| updates=updates, | |
| givens={ | |
| x: train_set_x[index * batch_size:(index + 1) * batch_size], | |
| y: train_set_y[index * batch_size:(index + 1) * batch_size] | |
| } | |
| ) | |
| ############## | |
| # TRAIN MODEL | |
| ############## | |
| print '... training' | |
| # early-stopping parameters | |
| patience = 10000 | |
| patience_increase = 2 | |
| improvement_threshold = 0.995 | |
| validation_frequency = min(n_train_batches, patience / 2) | |
| best_validation_loss = numpy.inf | |
| best_iter = 0 | |
| test_score = 0. | |
| start_time = timeit.default_timer() | |
| epoch = 0 | |
| done_looping = False | |
| while (epoch < n_epochs) and (not done_looping): | |
| epoch = epoch + 1 | |
| for minibatch_index in xrange(n_train_batches): | |
| minibatch_avg_cost = train_model(minibatch_index) | |
| iter = (epoch - 1) * n_train_batches + minibatch_index | |
| if (iter + 1) % validation_frequency == 0: | |
| validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] | |
| this_validation_loss = numpy.mean(validation_losses) | |
| print( | |
| 'epoch %i, minibatch %i/%i, validation error %f %%' % | |
| ( | |
| epoch, | |
| minibatch_index + 1, | |
| n_train_batches, | |
| this_validation_loss * 100. | |
| ) | |
| ) | |
| # if we got the best validation score until now | |
| if this_validation_loss < best_validation_loss: | |
| if (this_validation_loss < best_validation_loss * improvement_threshold): | |
| patience = max(patience, iter * patience_increase) | |
| best_validation_loss = this_validation_loss | |
| best_iter = iter | |
| test_losses = [test_model(i) for i in xrange(n_test_batches)] | |
| test_score = numpy.mean(test_losses) | |
| print(('epoch %i, minibatch %i/%i, test error of ' | |
| 'best model %f %%') % | |
| (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) | |
| if patience <= iter: | |
| done_looping = True | |
| break | |
| end_time = timeit.default_timer() | |
| print(('Optimization complete. Best validation score of %f %% ' | |
| 'obtained at iteration %i, with test performance %f %%') % | |
| (best_validation_loss * 100., best_iter + 1, test_score * 100.)) | |
| print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + | |
| ' ran for %.2fm' % ((end_time - start_time) / 60.)) | |
| if __name__ == '__main__': | |
| test_mlp() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment