Last active
February 9, 2023 15:22
-
-
Save pebbie/643e28c619efaa2fd30b1595bd5d0e6c to your computer and use it in GitHub Desktop.
H-DIBCO evaluation metric
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
author : Peb Ruswono Aryan | |
metric for evaluating binarization algorithms | |
implemented : | |
* F-Measure | |
* pseudo F-Measure (as in H-DIBCO 2010 & 2012) | |
* Peak Signal to Noise Ratio (PSNR) | |
* Negative Rate Measure (NRM) | |
* Misclassification Penaltiy Measure (MPM) | |
* Distance Reciprocal Distortion (DRD) | |
usage: | |
python metric.py test-image.png ground-truth-image.png | |
""" | |
import numpy as np | |
import cv2 | |
# uses https://gist.github.com/pebbie/c2cec958c248339c8537e0b4b90322da for skeletonization | |
from bwmorph_thin import bwmorph_thin as bwmorph | |
import os.path as path | |
import sys | |
def drd_fn(im, im_gt): | |
height, width = im.shape | |
neg = np.zeros(im.shape) | |
neg[im_gt!=im] = 1 | |
y, x = np.unravel_index(np.flatnonzero(neg), im.shape) | |
n = 2 | |
m = n*2+1 | |
W = np.zeros((m,m), dtype=np.uint8) | |
W[n,n] = 1. | |
W = cv2.distanceTransform(1-W, cv2.cv.CV_DIST_L2, cv2.cv.CV_DIST_MASK_PRECISE) | |
W[n,n] = 1. | |
W = 1./W | |
W[n,n] = 0. | |
W /= W.sum() | |
nubn = 0. | |
block_size = 8 | |
for y1 in xrange(0, height, block_size): | |
for x1 in xrange(0, width, block_size): | |
y2 = min(y1+block_size-1,height-1) | |
x2 = min(x1+block_size-1,width-1) | |
block_dim = (x2-x1+1)*(y1-y1+1) | |
block = 1-im_gt[y1:y2, x1:x2] | |
block_sum = np.sum(block) | |
if block_sum>0 and block_sum<block_dim: | |
nubn += 1 | |
drd_sum= 0. | |
tmp = np.zeros(W.shape) | |
for i in xrange(min(1,len(y))): | |
tmp[:,:] = 0 | |
x1 = max(0, x[i]-n) | |
y1 = max(0, y[i]-n) | |
x2 = min(width-1, x[i]+n) | |
y2 = min(height-1, y[i]+n) | |
yy1 = y1-y[i]+n | |
yy2 = y2-y[i]+n | |
xx1 = x1-x[i]+n | |
xx2 = x2-x[i]+n | |
tmp[yy1:yy2+1,xx1:xx2+1] = np.abs(im[y[i],x[i]]-im_gt[y1:y2+1,x1:x2+1]) | |
tmp *= W | |
drd_sum += np.sum(tmp) | |
return drd_sum/nubn | |
if __name__=="__main__": | |
if len(sys.argv)<3: | |
print sys.argv[0],"input-image ground-truth-image" | |
sys.exit(1) | |
if not (path.exists(sys.argv[1]) and path.exists(sys.argv[2])): | |
print "file not found" | |
sys.exit(1) | |
im = cv2.imread(sys.argv[1],0) | |
im_gt = cv2.imread(sys.argv[2], 0) | |
height, width = im.shape | |
npixel = height*width | |
im[im>0] = 1 | |
gt_mask = im_gt==0 | |
im_gt[im_gt>0] = 1 | |
sk = bwmorph(1-im_gt) | |
im_sk = np.ones(im_gt.shape) | |
im_sk[sk] = 0 | |
kernel = np.ones((3,3), dtype=np.uint8) | |
im_dil = cv2.erode(im_gt, kernel) | |
im_gtb = im_gt-im_dil | |
im_gtbd = cv2.distanceTransform(1-im_gtb, cv2.cv.CV_DIST_L2, 3) | |
nd = im_gtbd.sum() | |
ptp = np.zeros(im_gt.shape) | |
ptp[(im==0) & (im_sk==0)] = 1 | |
numptp = ptp.sum() | |
tp = np.zeros(im_gt.shape) | |
tp[(im==0) & (im_gt==0)] = 1 | |
numtp = tp.sum() | |
tn = np.zeros(im_gt.shape) | |
tn[(im==1) & (im_gt==1)] = 1 | |
numtn = tn.sum() | |
fp = np.zeros(im_gt.shape) | |
fp[(im==0) & (im_gt==1)] = 1 | |
numfp = fp.sum() | |
fn = np.zeros(im_gt.shape) | |
fn[(im==1) & (im_gt==0)] = 1 | |
numfn = fn.sum() | |
precision = numtp / (numtp + numfp) | |
recall = numtp / (numtp + numfn) | |
precall = numptp / np.sum(1-im_sk) | |
fmeasure = (2*recall*precision)/(recall+precision) | |
pfmeasure = (2*precall*precision)/(precall+precision) | |
mse = (numfp+numfn)/npixel | |
psnr = 10.*np.log10(1./mse) | |
nrfn = numfn / (numfn + numtp) | |
nrfp = numfp / (numfp + numtn) | |
nrm = (nrfn + nrfp)/2 | |
im_dn = im_gtbd.copy() | |
im_dn[fn==0] = 0 | |
dn = np.sum(im_dn) | |
mpfn = dn / nd | |
im_dp = im_gtbd.copy() | |
im_dp[fp==0] = 0; | |
dp = np.sum(im_dp) | |
mpfp = dp / nd | |
mpm = (mpfp + mpfn) / 2 | |
drd = drd_fn(im, im_gt) | |
print "F-measure\t: {0}\npF-measure\t: {1}\nPSNR\t\t: {2}\nNRM\t\t: {3}\nMPM\t\t: {4}\nDRD\t\t: {5}".format(fmeasure, pfmeasure, psnr, nrm, mpm, drd) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi, Peb
Thank you for your help.
In my case, RuntimeWarning problem occurs.

The Precision value was zero.
As a result, the numtp and numfp values were zero.
I have an error like the one below. Can you tell me why?