Last active
December 11, 2020 14:23
-
-
Save pecard/1b58df084e98b15418ef8aa4f9c5a0d1 to your computer and use it in GitHub Desktop.
Forest Loss with rgee
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# packages | |
pacman::p_load('ps', "rgee", "tidyverse", "sf", "ggplot2", "patchwork", | |
'reticulate') | |
ee_Initialize(email = '[email protected]') | |
# Hansen Global Forest Change | |
forestloss <- ee$Image("UMD/hansen/global_forest_change_2019_v1_7") | |
flossyear <- forestloss$select('lossyear') | |
# P Areas | |
wdpa_ee <- ee$FeatureCollection('WCMC/WDPA/current/polygons') | |
listpa = ee$List(c('33050', '351088', '342673')) | |
dulombi <- ee$Feature(wdpa_ee$filter(ee$Filter$eq("WDPA_PID", "33050"))) | |
pas_ee <- ee$FeatureCollection(wdpa_ee$filter(ee$Filter$inList("WDPA_PID", listpa))) | |
ee_national_parks <- pas_ee %>% ee_as_sf() | |
# Plot sf and get interactive map | |
plot(ee_national_parks['NAME']) | |
vis_lossyear = list( | |
min = 0, | |
max = 19, | |
palette = c('yellow', 'orange', 'red', 'lightblue', 'darkblue') | |
) | |
Map$setCenter(-14.45, 11.65, 9) | |
Map$addLayer(flossyear, | |
vis_lossyear, | |
"vis_lossyear" | |
) + | |
Map$addLayer(pas_ee, {}, "PA") | |
# Extract values from Hansen global_forest_change_2019_v1_7 | |
list_losses <- list() | |
for(i in 1:nrow(ee_national_parks)){ #nrow(gnb_pa) | |
igeom <- ee_national_parks[i, ] %>% select(WDPA_PID) | |
igeom_fc <- sf::st_make_valid(igeom) %>% sf_as_ee() | |
vList <- flossyear$reduceRegion( | |
reducer= ee$Reducer$toList(), | |
maxPixels = 1e9, | |
geometry = igeom_fc | |
)$values()$get(0)$getInfo() | |
list_losses[[i]] <- tibble(yearloss = vList, | |
WDPA_PID = igeom$WDPA_PID) | |
} | |
losses_gnb_pa <- bind_rows(list_losses) | |
yseries <- tibble(yearloss = c(1:19), | |
data = seq.POSIXt(as.POSIXct('2001-01-01'), | |
as.POSIXct('2019-01-01'), by = '1 year')) | |
parknames <- select(ee_national_parks, WDPA_PID, ORIG_NAME) %>% | |
sf::st_drop_geometry() | |
pa_floss <- losses_gnb_pa %>% arrange(WDPA_PID, yearloss) %>% | |
group_by(WDPA_PID, yearloss) %>% | |
summarise( | |
n = n(), | |
loss_ha = n*753.9/10000, | |
.groups = 'drop') %>% | |
group_by(WDPA_PID) %>% | |
mutate(cumloss = cumsum(loss_ha)) %>% | |
right_join(yseries, by = c('yearloss' = 'yearloss')) %>% | |
left_join(parknames, by = c('WDPA_PID' = 'WDPA_PID')) | |
pa_floss %>% filter( WDPA_PID == 33050 ) | |
ggplot(pa_floss) + | |
geom_line(aes(x=as.Date(data), y=cumloss/1000, colour = ORIG_NAME), size = 2) + | |
geom_vline(xintercept = as.Date('2013-01-01'), colour = 'white') + | |
scale_x_date(breaks = '1 year', date_labels = "%Y") + | |
scale_color_brewer('PA') + | |
theme( | |
legend.position="bottom", | |
legend.text = element_text(size = 8, color = "white"), | |
legend.background = element_rect(colour = "grey20", fill = "#1e1e1e"), | |
legend.title = element_text(size = 8, color = "white"), | |
legend.key = element_blank(), | |
strip.background =element_rect(fill="grey20"), | |
strip.text = element_text(colour = 'white'), | |
axis.text.y = element_text(size = 8, color = "white"), | |
axis.text.x = element_text(angle = 90, vjust=.5, size = 8, color = "white"), | |
axis.line = element_line(color = "grey20", size = .01), | |
axis.title = element_text(size = 9, color = "white"), | |
plot.title = element_text(size = 9, color = "white"), | |
panel.grid.major.x = element_line(colour = "grey20",size=0.01), | |
panel.grid.minor.x = element_line(colour = "grey20",size=0.01), | |
panel.grid.major.y = element_line(colour = "grey20",size=0.01), | |
panel.grid.minor.y = element_line(colour = "grey20",size=0.01), | |
plot.subtitle = element_text(size=9, face="italic", color="white"), | |
plot.caption = element_text(size=7, color="white"), | |
panel.background = element_rect(colour = "grey20", fill = "#1e1e1e"), | |
plot.background = element_rect(colour = "grey20", fill = "#1e1e1e") | |
) + | |
labs(y="Cummulative Loss ( ha ) / 1000", x = NULL, | |
title = 'Forest loss 2001-2019', subtitle = 'No threshold applyed', colour = 'white', | |
caption = '2013 onwards uses Landsat 8 OLI') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment