Skip to content

Instantly share code, notes, and snippets.

@pecard
Last active December 11, 2020 14:23
Show Gist options
  • Save pecard/1b58df084e98b15418ef8aa4f9c5a0d1 to your computer and use it in GitHub Desktop.
Save pecard/1b58df084e98b15418ef8aa4f9c5a0d1 to your computer and use it in GitHub Desktop.
Forest Loss with rgee
# packages
pacman::p_load('ps', "rgee", "tidyverse", "sf", "ggplot2", "patchwork",
'reticulate')
ee_Initialize(email = '[email protected]')
# Hansen Global Forest Change
forestloss <- ee$Image("UMD/hansen/global_forest_change_2019_v1_7")
flossyear <- forestloss$select('lossyear')
# P Areas
wdpa_ee <- ee$FeatureCollection('WCMC/WDPA/current/polygons')
listpa = ee$List(c('33050', '351088', '342673'))
dulombi <- ee$Feature(wdpa_ee$filter(ee$Filter$eq("WDPA_PID", "33050")))
pas_ee <- ee$FeatureCollection(wdpa_ee$filter(ee$Filter$inList("WDPA_PID", listpa)))
ee_national_parks <- pas_ee %>% ee_as_sf()
# Plot sf and get interactive map
plot(ee_national_parks['NAME'])
vis_lossyear = list(
min = 0,
max = 19,
palette = c('yellow', 'orange', 'red', 'lightblue', 'darkblue')
)
Map$setCenter(-14.45, 11.65, 9)
Map$addLayer(flossyear,
vis_lossyear,
"vis_lossyear"
) +
Map$addLayer(pas_ee, {}, "PA")
# Extract values from Hansen global_forest_change_2019_v1_7
list_losses <- list()
for(i in 1:nrow(ee_national_parks)){ #nrow(gnb_pa)
igeom <- ee_national_parks[i, ] %>% select(WDPA_PID)
igeom_fc <- sf::st_make_valid(igeom) %>% sf_as_ee()
vList <- flossyear$reduceRegion(
reducer= ee$Reducer$toList(),
maxPixels = 1e9,
geometry = igeom_fc
)$values()$get(0)$getInfo()
list_losses[[i]] <- tibble(yearloss = vList,
WDPA_PID = igeom$WDPA_PID)
}
losses_gnb_pa <- bind_rows(list_losses)
yseries <- tibble(yearloss = c(1:19),
data = seq.POSIXt(as.POSIXct('2001-01-01'),
as.POSIXct('2019-01-01'), by = '1 year'))
parknames <- select(ee_national_parks, WDPA_PID, ORIG_NAME) %>%
sf::st_drop_geometry()
pa_floss <- losses_gnb_pa %>% arrange(WDPA_PID, yearloss) %>%
group_by(WDPA_PID, yearloss) %>%
summarise(
n = n(),
loss_ha = n*753.9/10000,
.groups = 'drop') %>%
group_by(WDPA_PID) %>%
mutate(cumloss = cumsum(loss_ha)) %>%
right_join(yseries, by = c('yearloss' = 'yearloss')) %>%
left_join(parknames, by = c('WDPA_PID' = 'WDPA_PID'))
pa_floss %>% filter( WDPA_PID == 33050 )
ggplot(pa_floss) +
geom_line(aes(x=as.Date(data), y=cumloss/1000, colour = ORIG_NAME), size = 2) +
geom_vline(xintercept = as.Date('2013-01-01'), colour = 'white') +
scale_x_date(breaks = '1 year', date_labels = "%Y") +
scale_color_brewer('PA') +
theme(
legend.position="bottom",
legend.text = element_text(size = 8, color = "white"),
legend.background = element_rect(colour = "grey20", fill = "#1e1e1e"),
legend.title = element_text(size = 8, color = "white"),
legend.key = element_blank(),
strip.background =element_rect(fill="grey20"),
strip.text = element_text(colour = 'white'),
axis.text.y = element_text(size = 8, color = "white"),
axis.text.x = element_text(angle = 90, vjust=.5, size = 8, color = "white"),
axis.line = element_line(color = "grey20", size = .01),
axis.title = element_text(size = 9, color = "white"),
plot.title = element_text(size = 9, color = "white"),
panel.grid.major.x = element_line(colour = "grey20",size=0.01),
panel.grid.minor.x = element_line(colour = "grey20",size=0.01),
panel.grid.major.y = element_line(colour = "grey20",size=0.01),
panel.grid.minor.y = element_line(colour = "grey20",size=0.01),
plot.subtitle = element_text(size=9, face="italic", color="white"),
plot.caption = element_text(size=7, color="white"),
panel.background = element_rect(colour = "grey20", fill = "#1e1e1e"),
plot.background = element_rect(colour = "grey20", fill = "#1e1e1e")
) +
labs(y="Cummulative Loss ( ha ) / 1000", x = NULL,
title = 'Forest loss 2001-2019', subtitle = 'No threshold applyed', colour = 'white',
caption = '2013 onwards uses Landsat 8 OLI')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment