Created
December 16, 2020 16:38
-
-
Save pecard/4590e06502f9058ed5b399cb810dcaa4 to your computer and use it in GitHub Desktop.
Land Cover Change with rgee
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# packages | |
pacman::p_load('ps', "rgee", "tidyverse", "sf", "ggplot2", "patchwork", | |
'reticulate', 'googledrive', 'stars', 'plotKML', 'readxl', | |
'networkD3', 'OpenLand', 'ggtern') | |
ee_Initialize(email = '[email protected]') | |
# CORINE | |
clc18 = ee$Image('COPERNICUS/CORINE/V20/100m/2018')$select('landcover'); | |
clc12 = ee$Image('COPERNICUS/CORINE/V20/100m/2012')$select('landcover'); | |
clc1812 = clc18$multiply(1000)$add(clc12); | |
# CLC colour scheme | |
# read corine color palette | |
colours <- readxl::read_xls('D:/Dropbox/programacao/gee/clc2000legend.xls') | |
colourshex <- as_tibble(str_split_fixed(colours$RGB, "-", 3)) %>% mutate_if(is.character, as.integer) | |
colourshex$CLC_CODE <- colours$CLC_CODE | |
colourshex <- colourshex %>% filter(complete.cases(.)) %>% mutate(hexcode = rgb2hex(V1, V2, V3)) | |
# ROI | |
roi <- st_buffer(sf::st_sfc(st_point(c(-8.9373, 38.8900))), 0.1) %>% sf::st_set_crs(4326) | |
roi_ee <- roi %>% sf_as_ee() | |
# Map View | |
Map$setCenter(-8.94, 38.89, 10) | |
Map$addLayer(clc18, {}, 'Land Cover 18', opacity = 0.4) + | |
Map$addLayer(roi_ee, {}, 'roi', opacity = 0.4) | |
# Reduce to region | |
vListchange <- tibble(change = clc1812$reduceRegion( | |
reducer= ee$Reducer$toList(), | |
maxPixels = 1e9, | |
geometry = roi_ee | |
)$values()$get(0)$getInfo() | |
) | |
# Summarise | |
change1812 <- vListchange %>% separate(change, into = c('clc18', 'clc12'), sep = 3, remove = F) | |
change1812un <- distinct(change1812) | |
legend_tab <- tibble(categoryValue = as.numeric(unique(c(change1812un$clc18,change1812un$clc18)))) %>% | |
left_join(select(colourshex, CLC_CODE, color= hexcode), by = c('categoryValue' = 'CLC_CODE')) %>% | |
mutate(categoryName=as.factor(categoryValue)) %>% | |
select(categoryValue, categoryName, color) | |
summchange1812 <- change1812 %>% group_by(change) %>% | |
summarise(area_ha = n(), .groups = 'drop') %>% | |
inner_join(distinct(change1812), by = c('change' = 'change')) %>% | |
mutate(changed = clc18 != clc12, | |
CLC_CODE = as.numeric(clc18), | |
fromto = paste(clc12, clc18, sep = '-')) %>% | |
inner_join(select(colourshex, CLC_CODE, hexcode), by = c('CLC_CODE' = 'CLC_CODE')) | |
# ChordDiagram inputs | |
conting_tab <- tibble(Period = '2012-2018', | |
From = as.integer(summchange1812$clc12), | |
To = as.integer(summchange1812$clc18), | |
km2 = summchange1812$area_ha/1000, | |
QtPixel = summchange1812$area_ha, | |
Interval = 6, | |
yearFrom = 2012, | |
yearTo = 2018) | |
p1 <- chordDiagramLand(dataset = conting_tab, legendtable = legend_tab, legtitle = "CLC Class", | |
legendsize = .8) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment