Last active
October 19, 2019 17:55
-
-
Save pedrominicz/0f8feb3783eb75eca8df7483a36626de to your computer and use it in GitHub Desktop.
Programming Language Foundations in Agda: Induction
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Duction where | |
-- https://plfa.github.io/Induction/ | |
import Relation.Binary.PropositionalEquality as Eq | |
open Eq using (_≡_; refl; sym) | |
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _^_) | |
+assoc : ∀ (a b c : ℕ) → (a + b) + c ≡ a + (b + c) | |
+assoc zero b c = refl | |
+assoc (suc a) b c rewrite +assoc a b c = refl | |
+id : ∀ (a : ℕ) → a + zero ≡ a | |
+id zero = refl | |
+id (suc a) rewrite +id a = refl | |
+suc : ∀ (a b : ℕ) → a + suc b ≡ suc (a + b) | |
+suc zero b = refl | |
+suc (suc a) b rewrite +suc a b = refl | |
+comm : ∀ (a b : ℕ) → a + b ≡ b + a | |
+comm a zero = +id a | |
+comm a (suc b) -- a + suc b ≡ suc b + a | |
rewrite +suc a b -- suc (a + b) ≡ suc (b + a) | |
| +comm a b = refl -- a + b ≡ b + a | |
+swap : ∀ (a b c : ℕ) → a + (b + c) ≡ b + (a + c) | |
+swap a b c | |
rewrite sym (+assoc a b c) -- a + b + c ≡ b + (a + c) | |
| +comm a b -- b + a + c ≡ b + (a + c) | |
| +assoc b a c = refl -- b + (a + c) ≡ b + (a + c) | |
*zero : ∀ (a : ℕ) → a * zero ≡ zero | |
*zero zero = refl | |
*zero (suc a) rewrite *zero a = refl | |
*id : ∀ (a : ℕ) → a * 1 ≡ a | |
*id zero = refl | |
*id (suc a) rewrite *id a = refl | |
*suc : ∀ (a b : ℕ) → a * suc b ≡ a * b + a | |
*suc zero b = refl | |
*suc (suc a) b -- suc a * suc b ≡ suc a * b + suc a | |
rewrite *suc a b -- suc (b + (a * b + a)) ≡ b + a * b + suc a | |
| sym (+assoc b (a * b) a) -- suc (b + a * b + a) ≡ b + a * b + suc a | |
| sym (+suc (b + (a * b)) a) = refl -- b + a * b + suc a ≡ b + a * b + suc a | |
*distrib+ : ∀ (a b c : ℕ) → (a + b) * c ≡ a * c + b * c | |
*distrib+ a b zero -- (a + b) * zero ≡ a * zero + b * zero | |
rewrite *zero (a + b) -- zero ≡ a * zero + b * zero | |
| *zero a -- zero ≡ zero + b * zero | |
| *zero b = refl -- zero ≡ zero + zero | |
*distrib+ a b (suc c) -- (a + b) * suc c ≡ a * suc c + b * suc c | |
rewrite *suc (a + b) c -- (a + b) * c + (a + b) ≡ a * suc c + b * suc c | |
| *suc a c -- (a + b) * c + (a + b) ≡ a * c + a + b * suc c | |
| *suc b c -- (a + b) * c + (a + b) ≡ a * c + a + (b * c + b) | |
| +assoc (a * c) a (b * c + b) -- (a + b) * c + (a + b) ≡ a * c + (a + (b * c + b)) | |
| +comm a (b * c + b) -- (a + b) * c + (a + b) ≡ a * c + (b * c + b + a) | |
| +assoc (b * c) b a -- (a + b) * c + (a + b) ≡ a * c + (b * c + (b + a)) | |
| sym (+assoc (a * c) (b * c) (b + a)) -- (a + b) * c + (a + b) ≡ a * c + b * c + (b + a) | |
| +comm b a -- (a + b) * c + (a + b) ≡ a * c + b * c + (a + b) | |
| *distrib+ a b c = refl | |
*assoc : ∀ (a b c : ℕ) → (a * b) * c ≡ a * (b * c) | |
*assoc zero b c = refl | |
*assoc (suc a) b c -- suc a * b * c ≡ suc a * (b * c) | |
rewrite *suc a b -- (b + a * b) * c ≡ b * c + a * (b * c) | |
| *distrib+ b (a * b) c -- b * c + a * b * c ≡ b * c + a * (b * c) | |
| *assoc a b c = refl | |
*comm : ∀ (a b : ℕ) → a * b ≡ b * a | |
*comm zero b rewrite *zero b = refl | |
*comm (suc a) b -- suc a * b ≡ b * suc a | |
rewrite *suc a b -- b + a * b ≡ b * suc a | |
| *suc b a -- b + a * b ≡ b * a + b | |
| +comm (b * a) b -- b + a * b ≡ b + b * a | |
| *comm a b = refl | |
-- _∸_ : ℕ → ℕ → ℕ | |
-- a ∸ zero = a | |
-- zero ∸ suc b = zero | |
-- suc a ∸ suc b = a ∸ b | |
∸zero : ∀ (a : ℕ) → zero ∸ a ≡ zero | |
∸zero zero = refl | |
∸zero (suc a) = refl | |
∸assoc+ : ∀ (a b c : ℕ) → a ∸ b ∸ c ≡ a ∸ (b + c) | |
∸assoc+ a zero c = refl | |
∸assoc+ zero (suc b) c -- zero ∸ suc b ∸ c ≡ zero ∸ (suc b + c) | |
rewrite ∸zero b -- zero ∸ c ≡ zero | |
| ∸zero c = refl -- zero ≡ zero | |
∸assoc+ (suc a) (suc b) c rewrite ∸assoc+ a b c = refl | |
-- _^_ : ℕ → ℕ → ℕ | |
-- a ^ zero = 1 | |
-- a ^ suc b = a * a ^ b | |
^+* : ∀ (a b c : ℕ) → a ^ (b + c) ≡ a ^ b * a ^ c | |
^+* a zero c -- (a ^ (zero + c)) ≡ (a ^ zero) * (a ^ c) | |
rewrite *id (a ^ c) -- (a ^ c) ≡ (a ^ c) + zero | |
| +id (a ^ c) = refl | |
^+* a (suc b) c -- (a ^ (suc b + c)) ≡ (a ^ suc b) * (a ^ c) | |
-- (a ^ suc (b + c)) ≡ a * (a ^ b) * (a ^ c) | |
-- a * (a ^ (a + c)) ≡ a * (a ^ b) * (a ^ c) | |
rewrite *assoc a (a ^ b) (a ^ c) -- a * (a ^ (b + c)) ≡ a * ((a ^ b) * (a ^ c)) | |
| ^+* a b c = refl | |
^distrib* : ∀ (a b c : ℕ) → (a * b) ^ c ≡ a ^ c * b ^ c | |
^distrib* a b zero = refl | |
^distrib* a b (suc c) -- ((a * b) ^ suc c) ≡ (a ^ suc c) * (b ^ suc c) | |
rewrite sym (*assoc (a * (a ^ c)) b (b ^ c)) -- a * b * ((a * b) ^ c) ≡ a * (a ^ c) * b * (b ^ c) | |
| *assoc a (a ^ c) b -- a * b * ((a * b) ^ c) ≡ a * ((a ^ c) * b) * (b ^ c) | |
| *comm (a ^ c) b -- a * b * ((a * b) ^ c) ≡ a * (b * (a ^ c)) * (b ^ c) | |
| sym (*assoc a b (a ^ c)) -- a * b * ((a * b) ^ c) ≡ a * b * (a ^ c) * (b ^ c) | |
| *assoc (a * b) (a ^ c) (b ^ c) -- a * b * ((a * b) ^ c) ≡ a * b * ((a ^ c) * (b ^ c)) | |
| ^distrib* a b c = refl | |
one^ : ∀ (a : ℕ) → 1 ^ a ≡ 1 | |
one^ zero = refl | |
one^ (suc a) rewrite one^ a = refl | |
^*^ : ∀ (a b c : ℕ) → a ^ (b * c) ≡ (a ^ b) ^ c | |
^*^ a zero c -- a ^ (zero * c) ≡ (a ^ zero) ^ c | |
-- a ^ zero ≡ (a ^ zero) ^ c | |
-- 1 ≡ (a ^ zero) ^ c | |
-- 1 ≡ 1 ^ c | |
rewrite one^ c = refl | |
^*^ a (suc b) c -- a ^ (suc b * c) ≡ (a ^ suc b) ^ c | |
-- a ^ (c + b * c) ≡ (a ^ suc b) ^ c | |
-- a ^ (c + b * c) ≡ (a * a ^ b) ^ c | |
rewrite ^+* a c (b * c) -- (a ^ c) * (a ^ (b * c)) ≡ (a * (a ^ b)) ^ c | |
| ^distrib* a (a ^ b) c -- (a ^ c) * (a ^ (b * c)) ≡ (a ^ c) * ((a ^ b) ^ c) | |
| ^*^ a b c = refl | |
data Bin : Set where | |
<> : Bin | |
_O : Bin → Bin | |
_I : Bin → Bin | |
infixl 10 _O | |
infixl 10 _I | |
inc : Bin → Bin | |
inc <> = <> I | |
inc (x O) = x I | |
inc (x I) = (inc x) O | |
to : ℕ → Bin | |
to zero = <> O | |
to (suc x) = inc (to x) | |
from : Bin → ℕ | |
from <> = zero | |
from (x O) = 2 * from x | |
from (x I) = 2 * from x + 1 | |
+* : ∀ (n : ℕ) → n + n ≡ 2 * n | |
+* zero = refl | |
+* (suc x) rewrite *zero x | +id x = refl | |
inc-suc : ∀ (b : Bin) → from (inc b) ≡ suc (from b) | |
inc-suc <> = refl | |
inc-suc (x O) -- from (inc (x O)) ≡ suc (from (x O)) | |
rewrite sym (+id (from (x O))) -- from (x I) ≡ suc (from (x O) + zero) | |
| sym (+suc (from (x O)) zero) -- 2 * from x + 1 ≡ from (x O) + suc zero | |
| +id (from (x O)) = refl -- 2 * from x + 1 ≡ 2 * from x + 1 | |
inc-suc (x I) -- from (inc (x I)) ≡ suc (from (x I)) | |
rewrite sym (*suc 2 (from x)) -- from (inc x) + (from (inc x) + 0) ≡ suc (from x + (from x + 0) + 1) | |
| sym (+suc (from x + (from x + 0)) 1) -- from (inc x) + (from (inc x) + 0) ≡ from x + (from x + 0) + 2 | |
| +id (from x) -- from (inc x) + (from (inc x) + 0) ≡ from x + from x + 2 | |
| +id (from (inc x)) -- from (inc x) + from (inc x) ≡ from x + from x + 2 | |
| +* (from x) | |
| sym (*suc 2 (from x)) | |
| +* (from (inc x)) | |
| inc-suc x = refl | |
-- from (inc (x I)) ≡ suc (from (x I)) | |
-- from ((inc x) O) ≡ suc (2 * from x + 1) | |
-- 2 * from (inc x) ≡ suc (2 * from x + 1) | |
-- 2 * from (inc x) ≡ 2 * from x + 2 | |
-- 2 * from (inc x) ≡ 2 * (from x + 1) | |
-- 2 * from (inc x) ≡ 2 * (suc (from x)) | |
-- ... | |
-- from (inc x) ≡ suc (from x) | |
from∘to : ∀ (n : ℕ) → from (to n) ≡ n | |
from∘to zero = refl | |
from∘to (suc n) rewrite inc-suc (to n) | from∘to n = refl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment