Last active
August 9, 2022 11:57
-
-
Save pedrominicz/23584d8f2e74eb0898c19466f7bd06f6 to your computer and use it in GitHub Desktop.
Randomly generate typable SK-combinator calculus terms using Boltzmann samplers
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
:- ensure_loaded(library(apply)). | |
:- ensure_loaded(library(random)). | |
:- set_prolog_flag(optimise, true). | |
:- set_prolog_flag(optimise_unify, true). | |
% Randomly generate typable SK-combinator calculus terms using Boltzmann | |
% samplers. | |
% | |
% Based on the paper Random generation of closed simply-typed λ-terms: a | |
% synergy between logic programming and Boltzmann samplers | |
% | |
% https://arxiv.org/pdf/1612.07682.pdf | |
% | |
% Related: | |
% https://github.com/fredokun/arbogen | |
% https://github.com/maciej-bendkowski/boltzmann-brain | |
% https://github.com/maciej-bendkowski/lambda-sampler | |
% | |
% I haven't read it yet, but I think Paul Tarau does (among other things) what | |
% I do here in this paper: `https://arxiv.org/pdf/1910.01775.pdf`. | |
% The generating function for SK-combinator calculus terms, given the | |
% combinatorial class defined by `size/2`, is: | |
% | |
% 1 - sqrt(1 - 8z) | |
% A(z) = ---------------- | |
% 2z | |
% | |
% The radius of convergence of `A(z)` is: | |
% | |
% rho = 0.125 | |
% | |
% More generally, if there are `n` combinators, the combinatorial class for the | |
% analogous size function is: | |
% | |
% 1 - sqrt(1 - 4nz) | |
% A_n(z) = ----------------- | |
% 2z | |
% | |
% The radius of convergence of `A_n(z)` is: | |
% | |
% rho = 1 / 4n | |
% | |
% See section 3 of `https://arxiv.org/pdf/1612.07682.pdf`. | |
size(s, 0). | |
size(k, 0). | |
size(a(X, Y), S) :- size(X, S0), size(Y, S1), S is S0 + S1 + 1. | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
%% The Boltzmann sampler %% | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
min_size(90). | |
boltzmann_combinator(R) :- R < 0.5027624308761950. | |
next(R1, R2, Size1, Size2) :- | |
random(R1), | |
random(R2), | |
Size2 is Size1 + 1. | |
random_sk(X, A) :- | |
random(R), | |
random_sk(X, A, R, 0, Size), | |
min_size(MinSize), | |
Size >= MinSize, | |
!. | |
random_sk(X, A) :- random_sk(X, A). | |
random_sk(X, A, R) --> | |
{ boltzmann_combinator(R), !, random(NewR) }, | |
random_combinator(X, A, NewR). | |
random_sk(a(X, Y), B, _) --> | |
next(R1, R2), | |
random_sk(X, A -> B, R1), | |
random_sk(Y, A0, R2), | |
{ unify_with_occurs_check(A0, A) }. | |
random_combinator(k, A -> _B -> A, R) --> { R < 0.5, ! }. | |
random_combinator(s, (A -> B -> C) -> (A -> B) -> A -> C, _) --> []. | |
multithreaded_random_sk(X, A) :- | |
prolog_flag(cpu_count, MaxThreads0), | |
MaxThreads is MaxThreads0 - 1, | |
Goal = random_sk(X, A), | |
length(Goals, MaxThreads), | |
maplist(=(Goal), Goals), | |
first_solution([X, A], Goals, []). | |
% Pretty print an SK-combinator calculus term. | |
pretty(X) :- | |
numbervars(X, 0, _), | |
pretty(X, Xs, []), | |
maplist(write, Xs), | |
nl. | |
pretty(s) --> [s]. | |
pretty(k) --> [k]. | |
pretty(a(X, Y)) --> ['('], pretty(X), [' '], pretty(Y), [')']. | |
% Pretty print a type. | |
pretty_type(A) :- | |
numbervars(A, 0, _), | |
pretty_type(A, As, []), | |
maplist(write, As), | |
nl. | |
pretty_type(A -> B) --> | |
['('], pretty_type(A), !, [' → '], pretty_type(B), [')']. | |
pretty_type(A) --> [A]. | |
main :- | |
multithreaded_random_sk(X, A), | |
pretty(X), | |
pretty_type(A). |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
from decimal import Decimal, getcontext | |
getcontext().prec = 100 | |
d1 = Decimal(1) | |
d2 = Decimal(2) | |
d4 = Decimal(4) | |
d8 = Decimal(8) | |
def A0(z): | |
# | |
# 1 - sqrt(1 - 8z) | |
# A0(z) = ---------------- | |
# 2z | |
# | |
z = Decimal(z) | |
dividend = d1 - (d1 - (d8 * z)).sqrt() | |
divisor = d2 * z | |
return dividend / divisor | |
# First derivative of `A0`. | |
def A1(z): | |
# | |
# 1 - 4z - sqrt(1 - 8z) | |
# A1(z) = ---------------------- | |
# 2 * sqrt(1 - 8z) * z^2 | |
# | |
z = Decimal(z) | |
aux = (d1 - (d8 * z)).sqrt() | |
dividend = d1 - (d4 * z) - aux | |
divisor = d2 * aux * (z ** d2) | |
return dividend / divisor | |
# Expected size. | |
def E(x): | |
x = Decimal(x) | |
return x * (A1(x) / A0(x)) | |
rho = Decimal('0.125') | |
def parameter(size): | |
size = Decimal(size) | |
divisor = d2 | |
guess = rho / divisor | |
while True: | |
expected_size = E(guess) | |
if abs(size - expected_size) < Decimal('0.0001'): | |
return guess | |
divisor *= d2 | |
guess += rho / divisor if size > expected_size else -rho / divisor | |
def probability_combinator(x): | |
x = Decimal(x) | |
return 2 / A0(x) | |
size = 90 | |
x = parameter(size) | |
print(f'min_size({size}).') | |
p1 = probability_combinator(x) | |
print(f'boltzmann_combinator(R) :- R < {p1:.16}.') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment