Created
November 16, 2019 16:46
-
-
Save pedrominicz/27c27aa491f981b6c2eebd64f5137348 to your computer and use it in GitHub Desktop.
Programming Language Foundations in Agda: Bisimulation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Bisimulation where | |
open import Data.Product using (_×_; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩) | |
open import Relation.Binary.PropositionalEquality | |
using (_≡_; refl; cong; cong₂) | |
-- https://gist.github.com/pedrominicz/155a701293202ddfa56dd6ec02f3af1b | |
open import More | |
infix 4 _~_ | |
data _~_ : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A → Set where | |
` : ∀ {Γ A} (x : A ∈ Γ) | |
----------- | |
→ ` x ~ ` x | |
ƛ : ∀ {Γ A B} {M M† : Γ , A ⊢ B} | |
→ M ~ M† | |
------------ | |
→ ƛ M ~ ƛ M† | |
_·_ : ∀ {Γ A B} {M M† : Γ ⊢ A ⇒ B} {N N† : Γ ⊢ A} | |
→ M ~ M† | |
→ N ~ N† | |
----------------- | |
→ M · N ~ M† · N† | |
`let : ∀ {Γ A B} {M M† : Γ ⊢ A} {N N† : Γ , A ⊢ B} | |
→ M ~ M† | |
→ N ~ N† | |
------------------------ | |
→ `let M N ~ (ƛ N†) · M† | |
`tt : ∀ {Γ} | |
--------------- | |
→ `tt ~ `tt {Γ} | |
_† : ∀ {Γ A} | |
→ Γ ⊢ A | |
------- | |
→ Γ ⊢ A | |
` x † = ` x | |
ƛ M † = ƛ (M †) | |
(M · N) † = (M †) · (N †) | |
`let M N † = (ƛ (N †)) · (M †) | |
`tt † = `tt | |
†~ : ∀ {Γ A} (M : Γ ⊢ A) {N : Γ ⊢ A} | |
→ M † ≡ N | |
--------- | |
→ M ~ N | |
†~ (` x) refl = ` x | |
†~ (ƛ M) refl = ƛ (†~ M refl) | |
†~ (M · N) refl = †~ M refl · †~ N refl | |
†~ (`let M N) refl = `let (†~ M refl) (†~ N refl) | |
†~ `tt refl = `tt | |
~† : ∀ {Γ A} {M N : Γ ⊢ A} | |
→ M ~ N | |
--------- | |
→ M † ≡ N | |
~† (` x) = refl | |
~† (ƛ M) = cong ƛ (~† M) | |
~† (M · N) = cong₂ _·_ (~† M) (~† N) | |
~† (`let M N) | |
rewrite ~† M | ~† N = refl | |
~† `tt = refl | |
~Value : ∀ {Γ A} {M M† : Γ ⊢ A} | |
→ M ~ M† | |
→ Value M | |
---------- | |
→ Value M† | |
~Value (ƛ M) ƛ = ƛ | |
~Value `tt `tt = `tt | |
Value~ : ∀ {Γ A} {M M† : Γ ⊢ A} | |
→ M ~ M† | |
→ Value M† | |
---------- | |
→ Value M | |
Value~ (ƛ M) ƛ = ƛ | |
Value~ `tt `tt = `tt | |
~rename : ∀ {Γ Δ A} {M M† : Γ ⊢ A} | |
→ (ρ : Γ ⊆ Δ) | |
→ M ~ M† | |
-------------------------- | |
→ rename ρ M ~ rename ρ M† | |
~rename ρ (` x) = ` (ρ x) | |
~rename ρ (ƛ M) = ƛ (~rename (ext ρ) M) | |
~rename ρ (M · N) = ~rename ρ M · ~rename ρ N | |
~rename ρ (`let M N) = `let (~rename ρ M) (~rename (ext ρ) N) | |
~rename ρ `tt = `tt | |
~exts : ∀ {Γ Δ} | |
→ {σ : Γ ⊑ Δ} | |
→ {σ† : Γ ⊑ Δ} | |
→ (∀ {A} (x : A ∈ Γ) → σ x ~ σ† x) | |
---------------------------------------------------- | |
→ (∀ {A B} (x : A ∈ Γ , B) → exts σ x ~ exts σ† x) | |
~exts σ zero = ` zero | |
~exts σ (suc x) = ~rename suc (σ x) | |
~subst : ∀ {Γ Δ} | |
→ {σ : Γ ⊑ Δ} | |
→ {σ† : Γ ⊑ Δ} | |
→ (∀ {A} (x : A ∈ Γ) → σ x ~ σ† x) | |
----------------------------------------------------------- | |
→ (∀ {A} {M M† : Γ ⊢ A} → M ~ M† → subst σ M ~ subst σ† M†) | |
~subst σ (` x) = σ x | |
~subst σ (ƛ M) = ƛ (~subst (~exts σ) M) | |
~subst σ (M · N) = ~subst σ M · ~subst σ N | |
~subst σ (`let M N) = `let (~subst σ M) (~subst (~exts σ) N) | |
~subst σ `tt = `tt | |
_~[_] : ∀ {Γ A B} {M M† : Γ , A ⊢ B} {N N† : Γ ⊢ A} | |
→ M ~ M† | |
→ N ~ N† | |
--------------------- | |
→ M [ N ] ~ M† [ N† ] | |
_~[_] {Γ} {A} M N = ~subst σ M | |
where | |
σ : ∀ {B} (x : B ∈ Γ , A) → _ ~ _ | |
σ zero = N | |
σ (suc x) = ` x | |
-- M —— —→ —— N | |
-- | | | |
-- | | | |
-- ~ ~ | |
-- | | | |
-- | | | |
-- M† —— —→ —— N† | |
pattern leg M M†—→N† = ⟨ _ , ⟨ M , M†—→N† ⟩ ⟩ | |
sim : ∀ {Γ A} {M M† N : Γ ⊢ A} | |
→ M ~ M† | |
→ M —→ N | |
----------------------------- | |
→ ∃[ N† ] (N ~ N† × M† —→ N†) | |
sim (M · N) (ξ-·₁ M—→M') | |
with sim M M—→M' | |
... | leg M' M†—→M'† = leg (M' · N) (ξ-·₁ M†—→M'†) | |
sim (V · M) (ξ-·₂ VV M—→M') | |
with sim M M—→M' | |
... | leg M' M†—→M'† = leg (V · M') (ξ-·₂ (~Value V VV) M†—→M'†) | |
sim ((ƛ M) · V) (β-ƛ VV) = leg (M ~[ V ]) (β-ƛ (~Value V VV)) | |
sim (`let M N) (ξ-`let M—→M') | |
with sim M M—→M' | |
... | leg M' M†—→M'† = leg (`let M' N) (ξ-·₂ ƛ M†—→M'†) | |
sim (`let V M) (β-`let VV) = leg (M ~[ V ]) (β-ƛ (~Value V VV)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment