Last active
October 26, 2019 15:19
-
-
Save pedrominicz/3b258a27a48375ec00da576d5286754f to your computer and use it in GitHub Desktop.
Programming Language Foundations in Agda: Quantifiers
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Quantifiers where | |
import Relation.Binary.PropositionalEquality as Eq | |
open Eq using (_≡_; refl; cong; cong-app) | |
open Eq.≡-Reasoning | |
open import Data.Empty using (⊥; ⊥-elim) | |
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_; z≤n; s≤s) | |
open import Data.Nat.Properties using (+-suc) | |
open import Relation.Nullary using (¬_) | |
open import Data.Product using (_×_; proj₁; proj₂; _,_) | |
open import Data.Sum using (_⊎_; inj₁; inj₂) | |
-- https://gist.github.com/pedrominicz/bce9bcfc44f55c04ee5e0b6d903f5809 | |
open import Isomorphism using (_≃_; extensionality; ∀-extensionality) | |
∀-distrib-× : ∀ {A : Set} {B C : A → Set} | |
→ (∀ (x : A) → B x × C x) ≃ (∀ (x : A) → B x) × (∀ (x : A) → C x) | |
∀-distrib-× {A} {B} {C} = | |
record | |
{ to = to | |
; from = from | |
; from∘to = λ { _ → refl } | |
; to∘from = λ { _ → refl } | |
} | |
where | |
to : (∀ (x : A) → B x × C x) → (∀ (x : A) → B x) × (∀ (x : A) → C x) | |
to a→b×c = (helper₁ , helper₂) | |
where | |
helper₁ : ∀ (x : A) → B x | |
helper₁ a = proj₁ (a→b×c a) | |
helper₂ : ∀ (x : A) → C x | |
helper₂ a = proj₂ (a→b×c a) | |
from : (∀ (x : A) → B x) × (∀ (x : A) → C x) → (∀ (x : A) → B x × C x) | |
from (a→b , a→c) = λ a → (a→b a , a→c a) | |
⊎∀-implies-∀⊎ : ∀ {A : Set} {B C : A → Set} | |
→ (∀ (x : A) → B x) ⊎ (∀ (x : A) → C x) → ∀ (x : A) → B x ⊎ C x | |
⊎∀-implies-∀⊎ (inj₁ a→b) = λ a → inj₁ (a→b a) | |
⊎∀-implies-∀⊎ (inj₂ a→c) = λ a → inj₂ (a→c a) | |
data Tri : Set where | |
aa : Tri | |
bb : Tri | |
cc : Tri | |
∀-× : ∀ {P : Tri → Set} → (∀ (x : Tri) → P x) ≃ P aa × P bb × P cc | |
∀-× {P} = | |
record | |
{ to = to | |
; from = from | |
; from∘to = λ _ → ∀-extensionality (λ { aa → refl ; bb → refl ; cc → refl }) | |
; to∘from = λ _ → refl | |
} | |
where | |
to : (∀ (x : Tri) → P x) → P aa × P bb × P cc | |
to p = (p aa , p bb , p cc) | |
from : P aa × P bb × P cc → ∀ (x : Tri) → P x | |
from (a , b , c) aa = a | |
from (a , b , c) bb = b | |
from (a , b , c) cc = c | |
data Σ (A : Set) (B : A → Set) : Set where | |
⟨_,_⟩ : (a : A) → B a → Σ A B | |
Σ-syntax = Σ | |
syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B | |
infix 2 Σ-syntax | |
∃ : ∀ {A : Set} (B : A → Set) → Set | |
∃ {A} B = Σ A B | |
∃-syntax = ∃ | |
syntax ∃-syntax (λ x → B) = ∃[ x ] B | |
∃-elim : ∀ {A : Set} {B : A → Set} {C : Set} | |
→ (∀ x → B x → C) → ∃[ x ] B x → C | |
∃-elim f ⟨ x , Bx ⟩ = f x Bx | |
∀∃-currying : ∀ {A : Set} {B : A → Set} {C : Set} | |
→ (∀ x → B x → C) ≃ (∃[ x ] B x → C) | |
∀∃-currying {A} {B} {C} = | |
record | |
{ to = to | |
; from = from | |
; from∘to = λ _ → refl | |
; to∘from = λ _ → extensionality (λ { ⟨ _ , _ ⟩ → refl }) | |
} | |
where | |
to : (∀ x → B x → C) → ∃[ x ] B x → C | |
to = ∃-elim | |
from : (∃[ x ] B x → C) → ∀ x → B x → C | |
from f x Bx = f ⟨ x , Bx ⟩ | |
∃-distrib-⊎ : ∀ {A : Set} {B C : A → Set} | |
→ ∃[ x ] (B x ⊎ C x) ≃ (∃[ x ] B x) ⊎ (∃[ x ] C x) | |
∃-distrib-⊎ {A} {B} {C} = | |
record | |
{ to = to | |
; from = from | |
; from∘to = λ { ⟨ x , inj₁ Bx ⟩ → refl ; ⟨ x , inj₂ Cx ⟩ → refl } | |
; to∘from = λ { (inj₁ ⟨ x , Bx ⟩) → refl ; (inj₂ ⟨ x , Cx ⟩) → refl } | |
} | |
where | |
to : ∃[ x ] (B x ⊎ C x) → (∃[ x ] B x) ⊎ (∃[ x ] C x) | |
to ⟨ x , inj₁ Bx ⟩ = inj₁ ⟨ x , Bx ⟩ | |
to ⟨ x , inj₂ Cx ⟩ = inj₂ ⟨ x , Cx ⟩ | |
from : (∃[ x ] B x) ⊎ (∃[ x ] C x) → ∃[ x ] (B x ⊎ C x) | |
from (inj₁ ⟨ x , Bx ⟩) = ⟨ x , inj₁ Bx ⟩ | |
from (inj₂ ⟨ x , Cx ⟩) = ⟨ x , inj₂ Cx ⟩ | |
∃×-implies-×∃ : ∀ {A : Set} {B C : A → Set} | |
→ ∃[ x ] (B x × C x) → (∃[ x ] B x) × (∃[ x ] C x) | |
∃×-implies-×∃ ⟨ x , (Bx , Cx) ⟩ = (⟨ x , Bx ⟩ , ⟨ x , Cx ⟩) | |
{- | |
-- ×∃-implies-∃× doesn't hold as there is no guarantee that x ≡ y. | |
×∃-implies-∃× : ∀ {A : Set} {B C : A → Set} | |
→ (∃[ x ] B x) × (∃[ x ] C x) → ∃[ x ] (B x × C x) | |
×∃-implies-∃× (⟨ x , Bx ⟩ , ⟨ y , Cy ⟩) = _ | |
-} | |
∃-⊎ : ∀ {P : Tri → Set} → (∃[ x ] P x) ≃ P aa ⊎ P bb ⊎ P cc | |
∃-⊎ {P} = | |
record | |
{ to = to | |
; from = from | |
; from∘to = from∘to | |
; to∘from = to∘from | |
} | |
where | |
to : (∃[ x ] P x) → P aa ⊎ P bb ⊎ P cc | |
to ⟨ aa , Paa ⟩ = inj₁ Paa | |
to ⟨ bb , Pbb ⟩ = inj₂ (inj₁ Pbb) | |
to ⟨ cc , Pcc ⟩ = inj₂ (inj₂ Pcc) | |
from : P aa ⊎ P bb ⊎ P cc → (∃[ x ] P x) | |
from (inj₁ Paa) = ⟨ aa , Paa ⟩ | |
from (inj₂ (inj₁ Pbb)) = ⟨ bb , Pbb ⟩ | |
from (inj₂ (inj₂ Pcc)) = ⟨ cc , Pcc ⟩ | |
from∘to : (x : ∃-syntax P) → from (to x) ≡ x | |
from∘to ⟨ aa , Paa ⟩ = refl | |
from∘to ⟨ bb , Pbb ⟩ = refl | |
from∘to ⟨ cc , Pcc ⟩ = refl | |
to∘from : (x : P aa ⊎ P bb ⊎ P cc) → to (from x) ≡ x | |
to∘from (inj₁ Paa) = refl | |
to∘from (inj₂ (inj₁ Pbb)) = refl | |
to∘from (inj₂ (inj₂ Pcc)) = refl | |
data even : ℕ → Set | |
data odd : ℕ → Set | |
data even where | |
even-zero : even zero | |
even-suc : ∀ {n : ℕ} → odd n → even (suc n) | |
data odd where | |
odd-suc : ∀ {n : ℕ} → even n → odd (suc n) | |
even-∃ : ∀ {n : ℕ} → even n → ∃[ m ] (m * 2 ≡ n) | |
odd-∃ : ∀ {n : ℕ} → odd n → ∃[ m ] (1 + m * 2 ≡ n) | |
even-∃ even-zero = ⟨ zero , refl ⟩ | |
even-∃ (even-suc o) with odd-∃ o | |
... | ⟨ m , refl ⟩ = ⟨ suc m , refl ⟩ | |
odd-∃ (odd-suc e) with even-∃ e | |
... | ⟨ m , refl ⟩ = ⟨ m , refl ⟩ | |
∃-even : ∀ {n : ℕ} → ∃[ m ] (m * 2 ≡ n) → even n | |
∃-odd : ∀ {n : ℕ} → ∃[ m ] (1 + m * 2 ≡ n) → odd n | |
∃-even ⟨ zero , refl ⟩ = even-zero | |
∃-even ⟨ suc m , refl ⟩ = even-suc (∃-odd ⟨ m , refl ⟩) | |
∃-odd ⟨ m , refl ⟩ = odd-suc (∃-even ⟨ m , refl ⟩) | |
∃-+-≤ : ∀ {n m : ℕ} → n ≤ m → ∃[ x ] (n + x ≡ m) | |
∃-+-≤ {zero} {m} z≤m = ⟨ m , refl ⟩ | |
∃-+-≤ (s≤s n≤m) with ∃-+-≤ n≤m | |
... | ⟨ m , refl ⟩ = ⟨ m , refl ⟩ | |
≤-+-∃ : ∀ {n m : ℕ} → ∃[ x ] (n + x ≡ m) → n ≤ m | |
≤-+-∃ {zero} ⟨ x , refl ⟩ = z≤n | |
≤-+-∃ {suc n} ⟨ x , refl ⟩ = s≤s (≤-+-∃ {n} ⟨ x , refl ⟩) | |
¬∃≃∀¬ : ∀ {A : Set} {B : A → Set} | |
→ (¬ ∃[ x ] B x) ≃ (∀ x → ¬ B x) | |
¬∃≃∀¬ {A} {B} = | |
record | |
{ to = to | |
; from = from | |
; from∘to = λ _ → extensionality (λ { ⟨ _ , _ ⟩ → refl }) | |
; to∘from = λ _ → refl | |
} | |
where | |
to : ¬ ∃[ x ] B x → ∀ x → ¬ B x | |
to ¬∃ x Bx = ¬∃ ⟨ x , Bx ⟩ | |
from : (∀ x → ¬ B x) → ¬ ∃[ x ] B x | |
from ∀¬ ⟨ x , Bx ⟩ = ∀¬ x Bx | |
∃¬-implies-¬∀ : ∀ {A : Set} {B : A → Set} | |
→ ∃[ x ] (¬ B x) → ¬ (∀ x → B x) | |
∃¬-implies-¬∀ ⟨ x , ¬Bx ⟩ = λ B → ¬Bx (B x) | |
{- | |
-- ¬∀-implies-∃¬ does not hold because its unknown which x implies ¬ B x. | |
¬∀-implies-∃¬ : ∀ {A : Set} {B : A → Set} | |
→ ¬ (∀ x → B x) → ∃[ x ] (¬ B x) | |
¬∀-implies-∃¬ ¬∀ = ⟨ _ , _ ⟩ | |
-} | |
-- https://gist.github.com/pedrominicz/6c3dfe3fc35a5c3f7115f561fd0ac25d | |
open import Naturals using (Bin; <>; _O; _I; inc; from; to) | |
-- https://gist.github.com/pedrominicz/1e85c4ab834a01e990f3e7bc3129e9a0 | |
open import Relations using (One; Can; <>O; <>I; _O; _I; Can-to; to-O) | |
from-inc : ∀ (b : Bin) → from (inc b) ≡ suc (from b) | |
from-inc <> = refl | |
from-inc (b O) rewrite from-inc b = refl | |
from-inc (b I) rewrite from-inc b | +-suc (from b) (from b + 0) = refl | |
Bin-isomorphism : ℕ ≃ ∃[ b ] (Can b) | |
Bin-isomorphism = record | |
{ to = to' | |
; from = from' | |
; from∘to = from∘to | |
; to∘from = to∘from | |
} | |
where | |
to' : ℕ → ∃[ b ] (Can b) | |
to' n = ⟨ to n , Can-to n ⟩ | |
from' : ∃[ b ] (Can b) → ℕ | |
from' ⟨ b , _ ⟩ = from b | |
from∘to : ∀ (x : ℕ) → from' (to' x) ≡ x | |
from∘to zero = refl | |
from∘to (suc n) rewrite from-inc (to n) | from∘to n = refl | |
to∘from : ∀ (x : ∃[ b ] (Can b)) → to' (from' x) ≡ x | |
to∘from ⟨ <> O , <>O ⟩ = refl | |
to∘from ⟨ <> I , <>I ⟩ = refl | |
to∘from ⟨ (b O) , (can O) ⟩ rewrite to∘from ⟨ b , can ⟩ = ? | |
to∘from ⟨ (b I) , (can I) ⟩ rewrite to∘from ⟨ b , can ⟩ = ? |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment