Last active
October 20, 2019 22:12
-
-
Save pedrominicz/699400ae7c11d06a60efbc7a85f1c5d3 to your computer and use it in GitHub Desktop.
The Agda Typeclassopedia: Monad
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --without-K --safe #-} | |
module Monad where | |
-- [0] https://wiki.haskell.org/Typeclassopedia#Monad | |
open import Relation.Binary.PropositionalEquality using (_≡_; refl) | |
open import Function using (_∘_) | |
record Monad (m : Set → Set) : Set₁ where | |
infixl 5 _>>=_ _>>_ | |
field | |
return : ∀ {a : Set} → a → m a | |
_>>=_ : ∀ {a b : Set} → m a → (a → m b) → m b | |
left-identity : ∀ {a b : Set} (g : a → m b) (x : a) | |
→ return x >>= g ≡ g x | |
right-identity : ∀ {a : Set} (x : m a) | |
→ x >>= return ≡ x | |
associativity : ∀ {a b c : Set} (g : a → m b) (h : b → m c) (x : m a) | |
→ (x >>= g) >>= h ≡ x >>= λ { x → g x >>= h } | |
-- Equivalent to `Applicative._⊛>_`. | |
_>>_ : ∀ {a b : Set} → m a → m b → m b | |
x >> y = x >>= λ { x → y } | |
liftM : ∀ {a b : Set} → (a → b) → m a → m b | |
liftM g x = x >>= (return ∘ g) | |
-- Equivalent to `Applicative._⊛_`. | |
ap : ∀ {a b : Set} → m (a → b) → m a → m b | |
ap g x = g >>= λ { g → x >>= λ { x → return (g x) } } | |
module Example where | |
data Maybe (a : Set) : Set where | |
Just : a → Maybe a | |
Nothing : Maybe a | |
_>>=_ : ∀ {a b : Set} → Maybe a → (a → Maybe b) → Maybe b | |
Just x >>= g = g x | |
Nothing >>= g = Nothing | |
monad : Monad Maybe | |
monad = record | |
{ return = Just | |
; _>>=_ = _>>=_ | |
; left-identity = λ { g x → refl } | |
; right-identity = λ { (Just x) → refl ; Nothing → refl } | |
; associativity = λ { g h (Just x) → refl ; g h Nothing → refl } | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment