Last active
June 12, 2020 20:52
-
-
Save pedrominicz/744418fff6f9a23a59b1b2ed59b9e144 to your computer and use it in GitHub Desktop.
Unit interval, ℝ/ℚ and ℝ/ℤ
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import data.real.basic | |
import group_theory.quotient_group | |
-- https://leanprover.zulipchat.com/#narrow/stream/113489-new-members/topic/Defining.20the.20unit.20interval | |
-- https://leanprover.zulipchat.com/#narrow/stream/113489-new-members/topic/About.20measures | |
namespace set | |
@[simp] def I : Type := set.Icc (0 : ℝ) (1 : ℝ) | |
instance : has_zero I := ⟨⟨0, by simp [zero_le_one]⟩⟩ | |
instance : has_one I := ⟨⟨1, by simp [zero_le_one]⟩⟩ | |
end set | |
namespace quot | |
def RQ_setoid : setoid ℝ := | |
{ r := λ a b, ∃ k : ℚ, ↑k = b - a, | |
iseqv := by { | |
split, exact λ _, ⟨0, by push_cast; linarith⟩, | |
split, exact λ _ _ ⟨a, _⟩, ⟨-a, by push_cast; linarith⟩, | |
exact λ _ _ _ ⟨a, _⟩ ⟨b, _⟩, ⟨a + b, by push_cast; linarith⟩ } } | |
def RQ : Type := quotient RQ_setoid | |
notation `ℝ/ℚ` := RQ | |
def RQ.mk : ℝ → ℝ/ℚ := @quotient.mk _ RQ_setoid | |
end quot | |
namespace group_theory | |
instance : is_add_submonoid (set.range (coe : ℤ → ℝ)) := | |
begin | |
refine is_add_submonoid.mk ⟨0, rfl⟩ _, | |
rintros a b ⟨ka, hka⟩ ⟨kb, hkb⟩, | |
exact ⟨ka + kb, by push_cast; linarith⟩ | |
end | |
instance : is_add_subgroup (set.range (coe : ℤ → ℝ)) := | |
is_add_subgroup.mk (by rintros a ⟨k, hk⟩; exact ⟨-k, by push_cast; linarith⟩) | |
@[derive add_group] | |
def I : Type := quotient_add_group.quotient (set.range (coe : ℤ → ℝ)) | |
def I.mk : ℝ → I := quotient_add_group.mk | |
instance : has_zero I := ⟨I.mk 0⟩ | |
instance : has_one I := ⟨I.mk 1⟩ | |
example : (0 : I) = 1 := quot.sound ⟨1, by simp⟩ | |
example (a b : ℤ) : I.mk a = I.mk b := quot.sound ⟨-a + b, by push_cast⟩ | |
end group_theory |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment