Created
April 19, 2020 02:56
-
-
Save pedrominicz/b095096a9ee4881694de22e2e93453db to your computer and use it in GitHub Desktop.
Linear lambda calculus in Agda.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --safe --without-K #-} | |
module Linear where | |
open import Data.Bool | |
open import Data.List | |
open import Data.Product | |
Ctx : Set | |
Ctx = List Bool × List Bool | |
ε : Ctx | |
ε = [] , [] | |
ext : Ctx → Ctx | |
ext (Γ , Γ′) = true ∷ Γ , false ∷ Γ′ | |
data Var : Ctx → Set where | |
zero : ∀ {Γ} → Var (true ∷ Γ , false ∷ Γ) | |
suc : ∀ {b Γ Γ′} → Var (Γ , Γ′) → Var (b ∷ Γ , b ∷ Γ′) | |
data Term : Ctx → Set where | |
` : ∀ {Γ} → Var Γ → Term Γ | |
ƛ : ∀ {Γ} → Term (ext Γ) → Term Γ | |
_·_ : ∀ {Γ Γ′ Γ″} → Term (Γ , Γ′) → Term (Γ′ , Γ″) → Term (Γ , Γ″) | |
infixl 5 _·_ | |
ex₁ : Term ε | |
ex₁ = ƛ (` zero) | |
ex₂ : Term ε | |
ex₂ = ƛ (ƛ (ƛ (` (suc (suc zero)) · ` zero · ` (suc zero)))) | |
_⊆_ : Ctx → Ctx → Set | |
Γ ⊆ Δ = Var Γ → Var Δ | |
infix 4 _⊆_ | |
ext-ρ : ∀ {Γ Δ} → Γ ⊆ Δ → ext Γ ⊆ ext Δ | |
ext-ρ ρ zero = {!!} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment