Last active
October 17, 2019 19:26
-
-
Save pedrominicz/bd66d5ef83b3e395961877d58447946d to your computer and use it in GitHub Desktop.
Propositional Logic checker using "Continuations."
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Logic where | |
-- https://www.ps.uni-saarland.de/~duchier/python/continuations.html | |
import Prelude hiding (and, lookup, not, or) | |
import Control.Monad.State | |
import Data.IntMap | |
type Binding = IntMap Bool | |
type Cont r = State Binding (r -> r) | |
class Formula a where | |
satisfy :: a -> Cont (r -> r) | |
falsify :: a -> Cont (r -> r) | |
data Negation p = Negation p | |
instance Formula p => Formula (Negation p) where | |
satisfy (Negation p) = falsify p | |
falsify (Negation p) = satisfy p | |
data Conjunction p q = Conjunction p q | |
instance (Formula p, Formula q) => Formula (Conjunction p q) where | |
satisfy (Conjunction p q) = do | |
p <- satisfy p | |
q <- satisfy q | |
return $ \yes no -> p (q yes) no | |
falsify (Conjunction p q) = do | |
p <- falsify p | |
q <- falsify q | |
return $ \yes no -> p yes (q yes no) | |
data Disjunction p q = Disjunction p q | |
instance (Formula p, Formula q) => Formula (Disjunction p q) where | |
satisfy (Disjunction p q) = falsify (Conjunction (Negation p) (Negation q)) | |
falsify (Disjunction p q) = satisfy (Conjunction (Negation p) (Negation q)) | |
data Variable = Variable Int | |
assign :: Bool -> Variable -> Cont (r -> r) | |
assign value (Variable var) = do | |
bindings <- get | |
case lookup var bindings of | |
Just value' | |
| value == value' -> return $ \yes no -> yes no | |
| otherwise -> return $ \yes no -> no | |
Nothing -> do | |
modify (insert var value) | |
return $ \yes no -> yes no | |
instance Formula Variable where | |
satisfy = assign True | |
falsify = assign False | |
isValid :: Formula a => a -> Bool | |
isValid formula = evalState (falsify formula) empty (const False) True | |
and :: p -> q -> Conjunction p q | |
and = Conjunction | |
or :: p -> q -> Disjunction p q | |
or = Disjunction | |
not :: p -> Negation p | |
not = Negation | |
impl :: p -> q -> Disjunction (Negation p) q | |
impl p q = or (not p) q | |
p, q, r :: Variable | |
p = Variable 0 | |
q = Variable 1 | |
r = Variable 2 | |
-- isValid $ or p (not p) | |
-- isValid $ impl (not (not p)) p | |
-- isValid $ impl (impl (impl p q) p) p | |
-- isValid $ impl (impl p q) (or (not p) q) | |
-- isValid $ impl (not (and (not p) (not q))) (or p q) | |
-- isValid $ impl (and (or p q) (and (impl p r) (impl q r))) r |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment