Last active
August 9, 2022 00:25
-
-
Save pedrominicz/c20bbaf5f182129945dff1a748266ee4 to your computer and use it in GitHub Desktop.
Randomly generate simply-typed lambda calculus expressions using Boltzmann samplers
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
:- ensure_loaded(library(apply)). | |
:- ensure_loaded(library(random)). | |
:- set_prolog_flag(optimise, true). | |
:- set_prolog_flag(optimise_unify, true). | |
% Randomly generate simply-typed lambda calculus terms using Boltzmann | |
% samplers. | |
% | |
% Based on the paper Random generation of closed simply-typed λ-terms: a | |
% synergy between logic programming and Boltzmann samplers | |
% | |
% https://arxiv.org/pdf/1612.07682.pdf | |
% | |
% An application of the algorithm shown here: | |
% https://github.com/pedrominicz/sugar | |
% | |
% Related: | |
% https://github.com/fredokun/arbogen | |
% https://github.com/maciej-bendkowski/boltzmann-brain | |
% https://github.com/maciej-bendkowski/lambda-sampler | |
% Note that there are multiple definitions for the size of a lambda term. In | |
% particular, this definition is different from the one in the paper A Hiking | |
% Trip Through the Orders of Magnitude: Deriving Efficient Generators for | |
% Closed Simply-Typed Lambda Terms and Normal Forms. | |
% | |
% Also note that there are two definitions for the size of a lambda term in the | |
% reference paper. This is the definition of size used for deriving the | |
% generating function (and thus the Boltzmann sampler) for plain lambda terms. | |
size(z, 0). | |
size(s(X), S) :- size(X, S0), S is S0 + 1. | |
size(l(X), S) :- size(X, S0), S is S0 + 1. | |
size(a(X, Y), S) :- size(X, S0), size(Y, S1), S is S0 + S1 + 2. | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
%% The Boltzmann sampler %% | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
min_size(120). | |
boltzmann_variable(R) :- R < 0.3569605561766718. | |
boltzmann_variable_zero(R) :- R < 0.7044187641738427. | |
boltzmann_lambda(R) :- R < 0.6525417920028290. | |
next(R, Size1, Size2) :- | |
random(R), | |
Size2 is Size1 + 1. | |
random_lambda(X, A) :- | |
random(R), | |
random_lambda(X, A, [], R, 0, Size), | |
min_size(MinSize), | |
Size >= MinSize, | |
!. | |
random_lambda(X, A) :- random_lambda(X, A). | |
random_lambda(X, A, Ctx, R) --> | |
{ boltzmann_variable(R), !, random(NewR) }, | |
random_variable(X, A, Ctx, NewR). | |
random_lambda(l(X), A -> B, Ctx, R) --> | |
{ boltzmann_lambda(R), ! }, | |
next(NewR), | |
random_lambda(X, B, [A|Ctx], NewR). | |
random_lambda(a(X, Y), B, Ctx, _) --> | |
next(R1), | |
random_lambda(X, A -> B, Ctx, R1), | |
next(R2), | |
random_lambda(Y, A, Ctx, R2). | |
random_variable(z, A0, [A|_], R) --> | |
{ boltzmann_variable_zero(R), !, unify_with_occurs_check(A0, A) }. | |
random_variable(s(X), A, [_|Ctx], _) --> | |
next(R), | |
random_variable(X, A, Ctx, R). | |
multithreaded_random_lambda(X, A) :- | |
prolog_flag(cpu_count, MaxThreads0), | |
MaxThreads is MaxThreads0 - 1, | |
Goal = random_lambda(X, A), | |
length(Goals, MaxThreads), | |
maplist(=(Goal), Goals), | |
first_solution([X, A], Goals, []). | |
convert(X, NewX) :- convert(X, NewX, []). | |
convert(z, v(X), [X|_]). | |
convert(s(X), NewX, [_|Ctx]) :- convert(X, NewX, Ctx). | |
convert(l(Y), l(X, NewY), Ctx) :- convert(Y, NewY, [X|Ctx]). | |
convert(a(X, Y), a(NewX, NewY), Ctx) :- | |
convert(X, NewX, Ctx), | |
convert(Y, NewY, Ctx). | |
% Pretty print a term. | |
pretty(X0) :- | |
convert(X0, X), | |
numbervars(X, 0, _), | |
pretty(X, Xs, []), | |
maplist(write, Xs), | |
nl. | |
pretty(v('$VAR'(I))) --> [x, I]. | |
pretty(l('$VAR'(I), X)) --> ['(λ ', x, I, ', '], pretty(X), [')']. | |
pretty(a(X, Y)) --> ['('], pretty(X), [' '], pretty(Y), [')']. | |
% Pretty print a type. | |
pretty_type(A) :- | |
numbervars(A, 0, _), | |
pretty_type(A, As, []), | |
maplist(write, As), | |
nl. | |
pretty_type(A -> B) --> | |
['('], pretty_type(A), !, [' → '], pretty_type(B), [')']. | |
pretty_type(A) --> [A]. | |
main :- | |
multithreaded_random_lambda(X, A), | |
pretty(X), | |
pretty_type(A). |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
from decimal import Decimal, getcontext | |
getcontext().prec = 100 | |
d1 = Decimal(1) | |
d2 = Decimal(2) | |
d3 = Decimal(3) | |
d4 = Decimal(4) | |
d5 = Decimal(5) | |
d7 = Decimal(7) | |
d3_div_d2 = d3 / d2 | |
def A0(z): | |
# | |
# sqrt(1 - 3z - z^2 - z^3) | |
# 1 - z - ------------------------ | |
# sqrt(1 - z) | |
# -------------------------------- | |
# 2*z^2 | |
# | |
z = Decimal(z) | |
tmp1 = d1 - z | |
tmp2 = (d1 - d3 * z - z ** d2 - z ** d3).sqrt() | |
tmp3 = (d1 - z).sqrt() | |
tmp4 = tmp2 / tmp3 | |
dividend = tmp1 - tmp4 | |
divisor = d2 * (z ** d2) | |
return dividend / divisor | |
# First derivative of `A0`. | |
def A1(z): | |
z = Decimal(z) | |
d1_sub_z = d1 - z | |
aux = (d1 - (z ** d3) - (z ** d2) - (3 * z)).sqrt() | |
# tmp3 = ((1-z)^(3/2)*z - 2*(1-z)^(3/2)) * sqrt(1 - z^3 - z^2 - 3*z) | |
tmp1 = (d1_sub_z ** d3_div_d2) * z | |
tmp2 = d2 * (d1_sub_z ** d3_div_d2) | |
tmp3 = (tmp1 - tmp2) * aux | |
# tmp8 = z^4 + z^3 + 5*z^2 - 7*z+2 | |
tmp4 = z ** d4 | |
tmp5 = z ** d3 | |
tmp6 = d5 * (z ** d2) | |
tmp7 = d7 * z | |
tmp8 = tmp4 + tmp5 + tmp6 - tmp7 + d2 | |
dividend = tmp3 + tmp8 | |
# divisor = 2*(1-z)^(3/2) * z^3 * sqrt(-z^3-z^2-3*z+1) | |
tmp9 = d2 * (d1_sub_z ** d3_div_d2) | |
tmp10 = z ** d3 # `tmp5 = tmp10`, but repeating is probably less confusing. | |
divisor = tmp9 * tmp10 * aux | |
return dividend / divisor | |
# Expected size. | |
def E(x): | |
x = Decimal(x) | |
return x * (A1(x) / A0(x)) | |
# https://arxiv.org/pdf/1506.02367.pdf | |
rho = Decimal('0.2955977425220839') | |
def parameter(size): | |
size = Decimal(size) | |
divisor = d2 | |
guess = rho / divisor | |
while True: | |
expected_size = E(guess) | |
if abs(size - expected_size) < Decimal('0.0001'): | |
return guess | |
divisor *= d2 | |
guess += rho / divisor if size > expected_size else -rho / divisor | |
def probability_variable(x): | |
x = Decimal(x) | |
return (d1 / (d1 - x)) / A0(x) | |
def probability_variable_zero(x): | |
x = Decimal(x) | |
return d1 - x | |
def probability_lambda(x): | |
x = Decimal(x) | |
return x | |
size = 120 | |
# The numbers in `https://arxiv.org/pdf/1612.07682.pdf` are: | |
# | |
# x = Decimal('0.29558095907') | |
# print('min_size(120).') | |
x = parameter(size) | |
print(f'min_size({size}).') | |
p1 = probability_variable(x) | |
print(f'boltzmann_variable(R) :- R < {p1:.16}.') | |
p2 = probability_variable_zero(x) | |
print(f'boltzmann_variable_zero(R) :- R < {p2:.16}.') | |
p3 = probability_variable(x) + probability_lambda(x) | |
print(f'boltzmann_lambda(R) :- R < {p3:.16}.') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment