Last active
September 21, 2019 19:02
-
-
Save pedrominicz/c2e1567335c5b99b647a14a3b49a6619 to your computer and use it in GitHub Desktop.
Catamorphic Lambda Calculus Interpreter (doodle made while following a tutorial).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# LANGUAGE DeriveFunctor #-} | |
{-# LANGUAGE FlexibleContexts #-} | |
{-# LANGUAGE FlexibleInstances #-} | |
{-# LANGUAGE GeneralizedNewtypeDeriving #-} | |
{-# LANGUAGE LambdaCase #-} | |
{-# LANGUAGE MultiParamTypeClasses #-} | |
-- https://www.schoolofhaskell.com/user/bartosz/understanding-algebras | |
-- https://www.michaelpj.com/blog/2018/04/08/catamorphic-lc-interpreter.html | |
module Cata where | |
import Control.Monad.Reader | |
newtype Fix f = Fix { unFix :: f (Fix f) } | |
cata :: Functor f => (f a -> a) -> Fix f -> a | |
cata alg = alg . fmap (cata alg) . unFix | |
data ExprF a | |
= Ref Int | |
| Lam a | |
| App a a | |
| Num Integer | |
deriving Functor | |
type Expr = Fix ExprF | |
data Value a | |
= Number Integer | |
| Closure [Value a] (a (Value a)) | |
instance Show (Value a) where | |
show (Number x) = show x | |
show (Closure _ _) = "<closure>" | |
newtype Env a = Env { unEnv :: Reader [Value Env] a } | |
deriving (Functor, Applicative, Monad) | |
instance MonadReader [Value Env] Env where | |
ask = Env $ ask | |
local x = Env . local x . unEnv | |
eval :: Expr -> Value Env | |
eval expr = runReader (unEnv (cata algebra expr)) [] | |
algebra :: MonadReader [Value a] a => ExprF (a (Value a)) -> a (Value a) | |
algebra (Ref x) = do | |
env <- ask | |
return $ env !! x | |
algebra (Lam x) = do | |
env <- ask | |
return $ Closure env x | |
algebra (App x y) = x >>= \case | |
Closure env x' -> do | |
y' <- y | |
local (const (y':env)) x' | |
_ -> undefined | |
algebra (Num x) = return $ Number x | |
ref :: Int -> Expr | |
ref x = Fix $ Ref x | |
lam :: Expr -> Expr | |
lam x = Fix $ Lam x | |
app :: Expr -> Expr -> Expr | |
app x y = Fix $ App x y | |
num :: Integer -> Expr | |
num x = Fix $ Num x | |
s :: Expr | |
s = lam $ lam $ lam $ ((ref 2) `app` (ref 0)) `app` ((ref 1) `app` (ref 0)) | |
k :: Expr | |
k = lam $ lam $ ref 1 | |
i :: Expr | |
i = lam $ ref 0 | |
-- eval $ i `app` num 10 | |
-- eval $ s `app` k `app` k `app` num 10 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment