Last active
November 17, 2019 00:22
-
-
Save pedrominicz/fab3e6712f43d32570132ad7b5db1f01 to your computer and use it in GitHub Desktop.
Programming Language Foundations in Agda: Inference
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Inference where | |
open import Data.Nat using (ℕ; zero; suc) | |
open import Data.Product using (_×_; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩) | |
open import Relation.Binary.PropositionalEquality | |
using (_≡_; _≢_; refl) | |
open import Relation.Nullary using (¬_; Dec; yes; no) | |
infixr 7 _⇒_ | |
infixl 5 _,_ | |
data Type : Set where | |
_⇒_ : Type → Type → Type | |
⊤ : Type | |
_≟_ : ∀ (A B : Type) → Dec (A ≡ B) | |
(A ⇒ B) ≟ (A' ⇒ B') with A ≟ A' | B ≟ B' | |
... | yes refl | yes refl = yes refl | |
... | no ¬A | _ = no λ { refl → ¬A refl } | |
... | _ | no ¬B = no λ { refl → ¬B refl } | |
⊤ ≟ ⊤ = yes refl | |
(A ⇒ B) ≟ ⊤ = no λ () | |
⊤ ≟ (A ⇒ B) = no λ () | |
data Context : Set where | |
∅ : Context | |
_,_ : Context → Type → Context | |
data Term⁺ : Set | |
data Term⁻ : Set | |
data Term⁺ where | |
` : ℕ → Term⁺ | |
_·_ : Term⁺ → Term⁻ → Term⁺ | |
_↓_ : Term⁻ → Type → Term⁺ | |
data Term⁻ where | |
ƛ : Term⁻ → Term⁻ | |
tt : Term⁻ | |
_↑ : Term⁺ → Term⁻ | |
infix 4 _⦂_∈_ | |
data _⦂_∈_ : ℕ → Type → Context → Set where | |
zero : ∀ {Γ A} | |
----------- | |
→ zero ⦂ A ∈ Γ , A | |
suc : ∀ {Γ A B x} | |
→ x ⦂ A ∈ Γ | |
------------------- | |
→ suc x ⦂ A ∈ Γ , B | |
infix 4 _⊢_↑_ | |
infix 4 _⊢_↓_ | |
data _⊢_↑_ : Context → Term⁺ → Type → Set | |
data _⊢_↓_ : Context → Term⁻ → Type → Set | |
data _⊢_↑_ where | |
` : ∀ {Γ A x} | |
→ x ⦂ A ∈ Γ | |
------------------- | |
→ Γ ⊢ ` x ↑ A | |
_·_ : ∀ {Γ M N A B} | |
→ Γ ⊢ M ↑ A ⇒ B | |
→ Γ ⊢ N ↓ A | |
--------------- | |
→ Γ ⊢ M · N ↑ B | |
_↓ : ∀ {Γ M A} | |
→ Γ ⊢ M ↓ A | |
----------------- | |
→ Γ ⊢ (M ↓ A) ↑ A | |
data _⊢_↓_ where | |
ƛ : ∀ {Γ M A B} | |
→ Γ , A ⊢ M ↓ B | |
----------------- | |
→ Γ ⊢ ƛ M ↓ A ⇒ B | |
tt : ∀ {Γ} | |
------------ | |
→ Γ ⊢ tt ↓ ⊤ | |
_↑_ : ∀ {Γ M A B} | |
→ Γ ⊢ M ↑ A | |
→ A ≡ B | |
--------------- | |
→ Γ ⊢ (M ↑) ↓ B | |
unique↑ : ∀ {Γ M A B} | |
→ Γ ⊢ M ↑ A | |
→ Γ ⊢ M ↑ B | |
----------- | |
→ A ≡ B | |
unique↑ (` x) (` x') = helper x x' | |
where | |
helper : ∀ {Γ A B x} | |
→ x ⦂ A ∈ Γ | |
→ x ⦂ B ∈ Γ | |
------------ | |
→ A ≡ B | |
helper zero zero = refl | |
helper (suc x) (suc x') = helper x x' | |
unique↑ (M · N) (M' · N') = helper (unique↑ M M') | |
where | |
helper : ∀ {A A' B B'} → A ⇒ B ≡ A' ⇒ B' → B ≡ B' | |
helper refl = refl | |
unique↑ (M ↓) (M' ↓) = refl | |
lookup : ∀ Γ x | |
→ Dec (∃[ A ] (x ⦂ A ∈ Γ)) | |
lookup ∅ x = no λ () | |
lookup (Γ , A) zero = yes ⟨ A , zero ⟩ | |
lookup (Γ , A) (suc x) with lookup Γ x | |
... | yes ⟨ A' , x' ⟩ = yes ⟨ A' , suc x' ⟩ | |
... | no ¬∃ = no (ext∈ ¬∃) | |
where | |
ext∈ : ∀ {Γ B x} | |
→ ¬ ∃[ A ] (x ⦂ A ∈ Γ) | |
------------------------------ | |
→ ¬ ∃[ A ] (suc x ⦂ A ∈ Γ , B) | |
ext∈ ¬∃ ⟨ A , suc x ⟩ = ¬∃ ⟨ A , x ⟩ | |
synthesize : ∀ Γ M | |
-------------------------- | |
→ Dec (∃[ A ] (Γ ⊢ M ↑ A)) | |
inherit : ∀ Γ M A | |
----------------- | |
→ Dec (Γ ⊢ M ↓ A) | |
synthesize Γ (` x) with lookup Γ x | |
... | yes ⟨ A , x' ⟩ = yes ⟨ A , ` x' ⟩ | |
... | no ¬∃ = no λ { ⟨ A , ` x' ⟩ → ¬∃ ⟨ A , x' ⟩ } | |
synthesize Γ (M · N) with synthesize Γ M | |
... | no ¬∃ = no λ { ⟨ _ , M' · _ ⟩ → ¬∃ ⟨ _ , M' ⟩ } | |
... | yes ⟨ ⊤ , M' ⟩ = no λ { ⟨ _ , M'' · _ ⟩ → helper (unique↑ M' M'') } | |
where | |
helper : ∀ {A B} → ⊤ ≢ A ⇒ B | |
helper () | |
... | yes ⟨ A ⇒ B , M' ⟩ with inherit Γ N A | |
... | yes N' = yes ⟨ B , M' · N' ⟩ | |
... | no ¬N' = no (helper M' ¬N') | |
where | |
-- Yes, this is a Hunter×Hunter reference. | |
helper×helper : ∀ {A A' B B'} → A ⇒ B ≡ A' ⇒ B' → A ≡ A' | |
helper×helper refl = refl | |
helper : ∀ {Γ A B M N} | |
→ Γ ⊢ M ↑ A ⇒ B | |
→ ¬ (Γ ⊢ N ↓ A) | |
-------------------------- | |
→ ¬ ∃[ B ] (Γ ⊢ M · N ↑ B) | |
helper M' ¬N' ⟨ B' , M'' · N' ⟩ | |
rewrite helper×helper (unique↑ M' M'') = ¬N' N' | |
synthesize Γ (M ↓ A) with inherit Γ M A | |
... | yes M' = yes ⟨ A , M' ↓ ⟩ | |
... | no ¬M' = no λ { ⟨ _ , M' ↓ ⟩ → ¬M' M' } | |
inherit Γ (ƛ M) (A ⇒ B) with inherit (Γ , A) M B | |
... | yes M' = yes (ƛ M') | |
... | no ¬M' = no λ { (ƛ M') → ¬M' M' } | |
inherit Γ (ƛ M) ⊤ = no λ () | |
inherit Γ tt ⊤ = yes tt | |
inherit Γ tt (A ⇒ B) = no λ () | |
inherit Γ (M ↑) A with synthesize Γ M | |
... | no ¬∃ = no λ { (M' ↑ _) → ¬∃ ⟨ _ , M' ⟩ } | |
... | yes ⟨ A' , M' ⟩ with A' ≟ A | |
... | yes refl = yes (M' ↑ refl) | |
... | no ¬A≡A' = no (helper M' ¬A≡A') | |
where | |
helper : ∀ {Γ M' A A'} | |
→ Γ ⊢ M' ↑ A | |
→ A ≢ A' | |
--------------------- | |
→ ¬ (Γ ⊢ (M' ↑) ↓ A') | |
helper M' ¬A≡A' (M'' ↑ A≡A') rewrite unique↑ M' M'' = ¬A≡A' A≡A' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment