Created
July 31, 2022 11:21
-
-
Save pedrominicz/fc706d188165701109fed8e925ea81dd to your computer and use it in GitHub Desktop.
Good recursors for mutually inductive types
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import logic.equiv.basic | |
universes u v | |
section | |
parameters {l r : Type u} | |
mutual inductive P₁, P₂ (l r : Type u) | |
with P₁ : Type u | |
| zero : P₁ | |
| left₁ : r → P₁ → P₁ | |
| left₂ : l → P₂ → P₁ | |
with P₂ : Type u | |
| right₁ : l → P₁ → P₂ | |
| right₂ : r → P₂ → P₂ | |
def P : bool → Type u | |
| ff := P₁ | |
| tt := P₂ | |
def P.sizeof : (Σ' b, P b) → ℕ | |
| ⟨ff, x⟩ := @sizeof P₁ _ x | |
| ⟨tt, x⟩ := @sizeof P₂ _ x | |
meta def P.rel_tac : expr → list expr → tactic unit := | |
λ _ _, `[exact ⟨_, measure_wf P.sizeof⟩] | |
@[simp] def P.rec {C : Π b, P b → Sort v} | |
(hz : C ff P₁.zero) | |
(hl₁ : Π {j x}, C ff x → C ff (P₁.left₁ j x)) | |
(hl₂ : Π {i x}, C tt x → C ff (P₁.left₂ i x)) | |
(hr₁ : Π {i x}, C ff x → C tt (P₂.right₁ i x)) | |
(hr₂ : Π {j x}, C tt x → C tt (P₂.right₂ j x)) | |
: Π {b} x, C b x | |
| ff P₁.zero := hz | |
| ff (P₁.left₁ _ x) := hl₁ (@P.rec ff x) | |
| ff (P₁.left₂ _ x) := hl₂ (@P.rec tt x) | |
| tt (P₂.right₁ _ x) := hr₁ (@P.rec ff x) | |
| tt (P₂.right₂ _ x) := hr₂ (@P.rec tt x) | |
using_well_founded { rel_tac := P.rel_tac } | |
@[simp] def P₁.rec' {C₁ : P₁ → Sort v} {C₂ : P₂ → Sort v} | |
(hz : C₁ P₁.zero) | |
(hl₁ : Π {j x}, C₁ x → C₁ (P₁.left₁ j x)) | |
(hl₂ : Π {i x}, C₂ x → C₁ (P₁.left₂ i x)) | |
(hr₁ : Π {i x}, C₁ x → C₂ (P₂.right₁ i x)) | |
(hr₂ : Π {j x}, C₂ x → C₂ (P₂.right₂ j x)) | |
: Π x, C₁ x := | |
let C : Π b, P b → Sort v := λ b, bool.rec C₁ C₂ b in | |
@P.rec C hz @hl₁ @hl₂ @hr₁ @hr₂ ff | |
@[simp] def P₂.rec' {C₁ : P₁ → Sort v} {C₂ : P₂ → Sort v} | |
(hz : C₁ P₁.zero) | |
(hl₁ : Π {j x}, C₁ x → C₁ (P₁.left₁ j x)) | |
(hl₂ : Π {i x}, C₂ x → C₁ (P₁.left₂ i x)) | |
(hr₁ : Π {i x}, C₁ x → C₂ (P₂.right₁ i x)) | |
(hr₂ : Π {j x}, C₂ x → C₂ (P₂.right₂ j x)) | |
: Π x, C₂ x := | |
let C : Π b, P b → Sort v := λ b, bool.rec C₁ C₂ b in | |
@P.rec C hz @hl₁ @hl₂ @hr₁ @hr₂ tt | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment