Last active
August 28, 2018 05:45
-
-
Save peheje/621d285a6b7eea6ee79e to your computer and use it in GitHub Desktop.
Generic Heap in Swift with Min/Max implementation and tree printing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//: [Previous](@previous) | |
// Created by Peter Helstrup Jensen on 06-07-2015 | |
// Copyright (c) 2015 Peter Helstrup Jensen. All rights reserved. | |
// | |
// This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public | |
// License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later | |
// version. | |
// This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied | |
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. | |
// You should have received a copy of the GNU General Public License along with this program. If not, see | |
// http:/www.gnu.org/licenses/. | |
import Foundation | |
protocol HeapType { | |
func compare<T: Comparable>(_ first: T, _ second: T) -> Bool | |
} | |
class MinHeap: HeapType { | |
func compare<T: Comparable>(_ first: T, _ second: T) -> Bool { | |
return first < second | |
} | |
} | |
class MaxHeap: HeapType { | |
func compare<T: Comparable>(_ first: T, _ second: T) -> Bool { | |
return second < first | |
} | |
} | |
class Heap<T: Comparable> { | |
let type: HeapType | |
init(heapType: HeapType) { | |
self.type = heapType | |
} | |
var data = [T]() | |
func size() -> Int { | |
return data.count | |
} | |
func printHeap() { | |
print(data) | |
} | |
func printTree() { | |
func tree(_ index: Int, _ depth: inout Int) { | |
if data.isEmpty { return } | |
let right = rightIndex(index) | |
if right < data.count { | |
depth += 1 | |
tree(right, &depth) | |
} | |
for _ in 0..<depth*4 { | |
print(" ", terminator: "") | |
} | |
print(data[index]) | |
let left = leftIndex(index) | |
if left < data.count { | |
depth += 1 | |
tree(left, &depth) | |
} | |
depth -= 1 | |
} | |
var d = 0 | |
tree(0, &d) | |
} | |
func percolateUp(_ index: Int) { | |
let parent = parentIndex(index) | |
if parent != -1 && type.compare(data[index], data[parent]) { | |
swap(&data[index], &data[parent]) | |
percolateUp(parent) | |
} | |
} | |
func percolateDown(_ index: Int) { | |
let child = childCandidateIndex(index) | |
if child != -1 && type.compare(data[child], data[index]) { | |
swap(&data[index], &data[child]) | |
percolateDown(child) | |
} | |
} | |
func get() -> T { | |
return data[0] | |
} | |
func insert(_ value: T) { | |
data.append(value) | |
let lastIndex = data.count-1 | |
percolateUp(lastIndex) | |
} | |
func remove() { | |
data[0] = data.last! | |
data.removeLast() | |
percolateDown(0) | |
} | |
func childCandidateIndex(_ parentIndex: Int) -> Int { | |
let rightChildIndex = rightIndex(parentIndex) | |
let leftChildIndex = leftIndex(parentIndex) | |
let rightValue: T? = rightChildIndex < data.count ? data[rightChildIndex] : nil | |
let leftValue: T? = leftChildIndex < data.count ? data[leftChildIndex] : nil | |
if leftValue == nil && rightValue == nil { | |
return -1 | |
} | |
else if leftValue != nil && rightValue == nil { | |
return leftChildIndex | |
} | |
else if leftValue == nil && rightValue != nil { | |
return rightChildIndex | |
} | |
else if type.compare(leftValue!, rightValue!) { | |
return leftChildIndex | |
} | |
else { | |
return rightChildIndex | |
} | |
} | |
func parentIndex(_ childIndex: Int) -> Int { | |
return (childIndex-1)/2 | |
} | |
func leftIndex(_ parentIndex: Int) -> Int { | |
return 2*parentIndex + 1 | |
} | |
func rightIndex(_ parentIndex: Int) -> Int { | |
return 2*parentIndex + 2 | |
} | |
func getSortedArray() -> [T] { | |
let heapCopy = Heap(heapType: type) | |
heapCopy.data = [T](self.data) | |
var array = [T]() | |
for _ in heapCopy.data { | |
array.append(heapCopy.get()) | |
heapCopy.remove() | |
} | |
return array | |
} | |
} | |
//Try changing heap type: MaxHeap() and MinHeap() | |
let heap = Heap<Int>(heapType: MaxHeap()) | |
heap.insert(31) | |
heap.insert(32) | |
heap.insert(1) | |
heap.insert(15) | |
heap.insert(17) | |
heap.insert(12) | |
heap.insert(4) | |
heap.insert(35) | |
heap.insert(79) | |
heap.insert(44) | |
heap.insert(34) | |
heap.insert(54) | |
heap.insert(2) | |
heap.insert(9) | |
heap.insert(454) | |
print(heap.getSortedArray()) //should be O(n * log(n)) + copy time for convenience testing | |
print("_____________________________") | |
for _ in 0..<heap.size() { | |
heap.printTree() | |
heap.remove() | |
print("_____________________________") | |
} | |
let sHeap = Heap<String>(heapType: MaxHeap()) | |
sHeap.insert("Abe") | |
sHeap.insert("Citron") | |
sHeap.insert("Båd") | |
sHeap.insert("Dykkerur") | |
sHeap.insert("Kat") | |
sHeap.insert("Www") | |
sHeap.insert("Internet") | |
for _ in 0..<sHeap.size() { | |
sHeap.printTree() | |
sHeap.remove() | |
print("_____________________________") | |
} | |
//: [Next](@next) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment