Created
July 10, 2018 12:22
-
-
Save pengelbrecht/be4571dd4fd215866c5e4cf805138fef to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
var MAX_AGENTS_TO_TEST = 200; | |
function determineAgents(callDuration, calls, periodLength, answerTarget, serviceLevelTarget) { | |
if(calls === 0) return(0); | |
for (var agents = 1; agents <= MAX_AGENTS_TO_TEST; agents++) { | |
if(serviceLevel(callDuration, calls, periodLength, agents, answerTarget) >= serviceLevelTarget) break; | |
} | |
return(agents); | |
} | |
function agentOccupancy(callDuration, calls, periodLength, agents) { | |
return(callDuration * calls / (periodLength * agents)) | |
} | |
function averageSpeedOfAnswer(callDuration, calls, periodLength, agents) { | |
var U = callDuration * calls / periodLength; | |
var o = U / agents; | |
var ec = PoissonTerm(U, agents)/(PoissonTerm(U, agents) + (1-o)*PoissonP(U,agents-1)); | |
return(ec * callDuration /(agents * (1 - o))); | |
} | |
function serviceLevel(callDuration, calls, periodLength, agents, answerTarget) { | |
var U = callDuration * calls / periodLength; | |
var o = U / agents; | |
var ec = PoissonTerm(U, agents)/(PoissonTerm(U, agents) + (1-o)*PoissonP(U,agents-1)); | |
return(1 - ec * Math.exp(-(agents-U)*answerTarget/callDuration)); | |
} | |
// Helper functions | |
function g( x ) { | |
// Peizer & Pratt 1968, JASA 63: 1416-1456 | |
var switchlev = 0.1, z; | |
if (x == 0) z = 1; | |
else | |
if (x == 1) z = 0; | |
else { | |
var d = 1 - x; | |
if (Math.abs(d) > switchlev) | |
z = (1 - (x * x) + (2 * x * Math.log(x))) / (d * d); | |
else { | |
z = d / 3; // first term | |
var di = d; // d**1 | |
for (var i = 2; i <= 7; i++) { | |
di *= d; // d**i | |
z += (2 * di) / ((i+1) * (i+2)); | |
} | |
} | |
} | |
return z; | |
} | |
function NormalP( x ) { | |
// Abramowitz & Stegun 26.2.19 | |
var | |
d1 = 0.0498673470, | |
d2 = 0.0211410061, | |
d3 = 0.0032776263, | |
d4 = 0.0000380036, | |
d5 = 0.0000488906, | |
d6 = 0.0000053830, | |
a = Math.abs(x), | |
t; | |
t = 1.0 + a*(d1+a*(d2+a*(d3+a*(d4+a*(d5+a*d6))))); | |
// to 16th power | |
t *= t; t *= t; t *= t; t *= t; | |
t = 1.0 / (t+t); // the MINUS 16th | |
if (x >= 0) t = 1-t; | |
return t; | |
} | |
function LnFact( x ) { | |
// ln(x!) by Stirling's formula | |
// see Knuth I: 111 | |
if (x <= 1) x = 1; | |
if (x < 12) | |
return Math.log( Fact(Math.round(x)) ); | |
else { | |
var invx = 1 / x; | |
var invx2 = invx * invx; | |
var invx3 = invx2 * invx; | |
var invx5 = invx3 * invx2; | |
var invx7 = invx5 * invx2; | |
var sum = ((x + 0.5) * Math.log(x)) - x; | |
sum += Math.log(2*Math.PI) / 2; | |
sum += (invx / 12) - (invx3 / 360); | |
sum += (invx5 / 1260) - (invx7 / 1680); | |
return sum; | |
} | |
} | |
function Fact( x ) { | |
// x factorial | |
var t=1; | |
while (x > 1) | |
t *= x--; | |
return t; | |
} | |
function PoissonPD( u, k ) { | |
// Peizer & Pratt 1968, JASA 63: 1416-1456 | |
var s = k + (1/2); | |
var d1 = k + (2/3) - u; | |
var d2 = d1 + 0.02/(k+1); | |
var z = (1 + g(s/u)) / u; | |
z = d2 * Math.sqrt(z); | |
z = NormalP( z ); | |
return z; | |
} | |
function PoissonTerm( u, k ) { | |
// by logs | |
return Math.exp( (k * Math.log(u)) - u - LnFact(k) ); | |
} | |
function PoissonP( u, k ) { | |
// term-by-term summation | |
if (k >= 20) return PoissonPD( u, k ); | |
else { | |
var sum = 0.0, j = 0; | |
while (j <= k) | |
sum += PoissonTerm( u, j++ ); | |
if (sum > 1) sum = 1; | |
return sum; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment