Last active
August 4, 2024 03:25
-
-
Save perrygeo/5667173 to your computer and use it in GitHub Desktop.
Python implementation of zonal statistics function. Optimized for dense polygon layers, uses numpy, GDAL and OGR to rival the speed of starspan.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Zonal Statistics | |
Vector-Raster Analysis | |
Copyright 2013 Matthew Perry | |
Usage: | |
zonal_stats.py VECTOR RASTER | |
zonal_stats.py -h | --help | |
zonal_stats.py --version | |
Options: | |
-h --help Show this screen. | |
--version Show version. | |
""" | |
from osgeo import gdal, ogr | |
from osgeo.gdalconst import * | |
import numpy as np | |
import sys | |
gdal.PushErrorHandler('CPLQuietErrorHandler') | |
def bbox_to_pixel_offsets(gt, bbox): | |
originX = gt[0] | |
originY = gt[3] | |
pixel_width = gt[1] | |
pixel_height = gt[5] | |
x1 = int((bbox[0] - originX) / pixel_width) | |
x2 = int((bbox[1] - originX) / pixel_width) + 1 | |
y1 = int((bbox[3] - originY) / pixel_height) | |
y2 = int((bbox[2] - originY) / pixel_height) + 1 | |
xsize = x2 - x1 | |
ysize = y2 - y1 | |
return (x1, y1, xsize, ysize) | |
def zonal_stats(vector_path, raster_path, nodata_value=None, global_src_extent=False): | |
rds = gdal.Open(raster_path, GA_ReadOnly) | |
assert(rds) | |
rb = rds.GetRasterBand(1) | |
rgt = rds.GetGeoTransform() | |
if nodata_value: | |
nodata_value = float(nodata_value) | |
rb.SetNoDataValue(nodata_value) | |
vds = ogr.Open(vector_path, GA_ReadOnly) # TODO maybe open update if we want to write stats | |
assert(vds) | |
vlyr = vds.GetLayer(0) | |
# create an in-memory numpy array of the source raster data | |
# covering the whole extent of the vector layer | |
if global_src_extent: | |
# use global source extent | |
# useful only when disk IO or raster scanning inefficiencies are your limiting factor | |
# advantage: reads raster data in one pass | |
# disadvantage: large vector extents may have big memory requirements | |
src_offset = bbox_to_pixel_offsets(rgt, vlyr.GetExtent()) | |
src_array = rb.ReadAsArray(*src_offset) | |
# calculate new geotransform of the layer subset | |
new_gt = ( | |
(rgt[0] + (src_offset[0] * rgt[1])), | |
rgt[1], | |
0.0, | |
(rgt[3] + (src_offset[1] * rgt[5])), | |
0.0, | |
rgt[5] | |
) | |
mem_drv = ogr.GetDriverByName('Memory') | |
driver = gdal.GetDriverByName('MEM') | |
# Loop through vectors | |
stats = [] | |
feat = vlyr.GetNextFeature() | |
while feat is not None: | |
if not global_src_extent: | |
# use local source extent | |
# fastest option when you have fast disks and well indexed raster (ie tiled Geotiff) | |
# advantage: each feature uses the smallest raster chunk | |
# disadvantage: lots of reads on the source raster | |
src_offset = bbox_to_pixel_offsets(rgt, feat.geometry().GetEnvelope()) | |
src_array = rb.ReadAsArray(*src_offset) | |
# calculate new geotransform of the feature subset | |
new_gt = ( | |
(rgt[0] + (src_offset[0] * rgt[1])), | |
rgt[1], | |
0.0, | |
(rgt[3] + (src_offset[1] * rgt[5])), | |
0.0, | |
rgt[5] | |
) | |
# Create a temporary vector layer in memory | |
mem_ds = mem_drv.CreateDataSource('out') | |
mem_layer = mem_ds.CreateLayer('poly', None, ogr.wkbPolygon) | |
mem_layer.CreateFeature(feat.Clone()) | |
# Rasterize it | |
rvds = driver.Create('', src_offset[2], src_offset[3], 1, gdal.GDT_Byte) | |
rvds.SetGeoTransform(new_gt) | |
gdal.RasterizeLayer(rvds, [1], mem_layer, burn_values=[1]) | |
rv_array = rvds.ReadAsArray() | |
# Mask the source data array with our current feature | |
# we take the logical_not to flip 0<->1 to get the correct mask effect | |
# we also mask out nodata values explictly | |
masked = np.ma.MaskedArray( | |
src_array, | |
mask=np.logical_or( | |
src_array == nodata_value, | |
np.logical_not(rv_array) | |
) | |
) | |
feature_stats = { | |
'min': float(masked.min()), | |
'mean': float(masked.mean()), | |
'max': float(masked.max()), | |
'std': float(masked.std()), | |
'sum': float(masked.sum()), | |
'count': int(masked.count()), | |
'fid': int(feat.GetFID())} | |
stats.append(feature_stats) | |
rvds = None | |
mem_ds = None | |
feat = vlyr.GetNextFeature() | |
vds = None | |
rds = None | |
return stats | |
if __name__ == "__main__": | |
opts = {'VECTOR': sys.argv[1], 'RASTER': sys.argv[2]} | |
stats = zonal_stats(opts['VECTOR'], opts['RASTER']) | |
try: | |
from pandas import DataFrame | |
print DataFrame(stats) | |
except ImportError: | |
import json | |
print json.dumps(stats, indent=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$ time python zonal_stats.py test.shp terrain/slope.tif | |
count fid max mean min std sum | |
0 203 0 96 65.876847 3 17.968489 13373 | |
1 130 1 90 60.100000 3 16.728994 7813 | |
2 1341 2 102 53.211037 2 17.901655 71356 | |
3 130 3 90 60.100000 3 16.728994 7813 | |
4 132 4 64 15.962121 1 15.360519 2107 | |
5 132 5 53 31.515152 17 7.970100 4160 | |
6 131 6 42 9.893130 0 8.168317 1296 | |
7 132 7 64 28.712121 2 14.853594 3790 | |
8 133 8 54 35.548872 11 8.878856 4728 | |
9 131 9 82 52.297710 4 17.349877 6851 | |
10 131 10 11 3.030534 0 1.781752 397 | |
11 134 11 57 10.156716 1 11.960042 1361 | |
12 133 12 45 19.000000 0 13.727750 2527 | |
13 132 13 64 26.507576 1 18.848075 3499 | |
14 132 14 94 52.787879 1 22.297585 6968 | |
15 131 15 84 19.450382 1 15.992944 2548 | |
16 132 16 52 11.583333 0 11.538501 1529 | |
17 132 17 108 53.515152 6 18.198603 7064 | |
18 341 18 76 39.117302 9 11.540482 13339 | |
19 337 19 57 19.988131 4 9.593512 6736 | |
20 336 20 78 48.636905 11 13.357014 16342 | |
21 338 21 3 0.855030 0 0.527067 289 | |
22 337 22 34 5.347181 0 7.069888 1802 | |
23 341 23 0 0.000000 0 0.000000 0 | |
24 341 24 42 16.612903 0 9.041271 5665 | |
25 337 25 128 78.848665 5 18.689028 26572 | |
26 341 26 29 7.973607 1 5.341357 2719 | |
27 339 27 78 35.616519 5 14.455317 12074 | |
28 341 28 65 20.199413 0 16.636394 6888 | |
29 340 29 84 35.855882 1 17.022989 12191 | |
30 338 30 96 61.440828 2 16.703587 20767 | |
31 340 31 101 57.832353 8 18.161971 19663 | |
real 0m1.311s | |
user 0m0.372s | |
sys 0m0.752s | |
#### Starspan equivalent | |
$ time starspan --vector test.shp --out-prefix testout --out-type table \ | |
--summary-suffix _stats.csv --raster terrain/slope.tif \ | |
--stats avg mode median min max sum stdev nulls && \ | |
cat testout_stats.csv | |
1: Extracting from /usr/local/apps/land_owner_tools/lot/fixtures/downloads/terrain/slope.tif | |
Summary: | |
Intersecting features: 32 | |
Polygons: 32 | |
Processed pixels: 8379 | |
real 0m1.440s | |
user 0m0.944s | |
sys 0m0.296s |
I'd like to know the point of the max and min values. Say, for example, I'm running on an elevation band and I want to know the high elevation and the location.
Hi, it would possible to add something like:
try:
do stats
except Exception as e:
print(e)
continue
I am trying to ruin this with several thosusands of lines, but at sometimes it seems that some of them have geomtri erros, so the whole process stop. It would be nice to be able to get the valid values instead of lose all of them for some invalids.
Maybe it could be in the start of the while? I am gonna try it
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@vickyting0910, @mwooten3, @dagnachewl - I was getting this error. too (numpy.ma.core.MaskError: Mask and data not compatible: data size is 1, mask size is XXX). The projection was the same, so that wasn't the problem.
My vector map (USA + territories) is a larger extent than my raster (lower 48 only), and this error was occurring on features outside the raster's extent. I added an output field in the feature_stats called "error_flag". It defaults to 0, but I put the offending lines of code inside a try/except and flagged those features with a value of 1. You can see I also added the "NAME" and "UA_ID" fields to the output. Not shown here, I added a print statement to get more info on those features, and I found they were features in Hawaii, American Samoa, etc.
`
`
I think the real solution is to clip my vector map, but at least this makes the code more bulletproof.