Created
February 8, 2019 12:41
-
-
Save persiyanov/9454dc94a08b64337fcc1629d316e87e to your computer and use it in GitHub Desktop.
pytorch masked matmul with sparse mask
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.autograd | |
class MaskedSpMatmul(torch.autograd.Function): | |
CHUNK_SIZE = 10000 | |
@staticmethod | |
def forward(ctx, a, b, mask): | |
""" | |
a: tensor N x M | |
b: tensor M x K | |
mask: tensor 2 x L | |
output: sparse tensor: N x K where only L values are nonzero (specified by mask) | |
""" | |
N, M, K, L = a.shape[0], a.shape[1], b.shape[1], mask.shape[1] | |
ctx.save_for_backward(a, b, mask) | |
values = torch.zeros(L, dtype=a.dtype) | |
for idx in range(0, L, MaskedSpMatmul.CHUNK_SIZE): | |
batch_indices = mask[:, idx:idx+MaskedSpMatmul.CHUNK_SIZE] | |
a_batch = torch.index_select(a, 0, batch_indices[0, :]) | |
b_batch = torch.index_select(b, 1, batch_indices[1, :]).t() | |
dot_prods = torch.einsum('ij,ij->i', [a_batch, b_batch]) | |
values[idx:idx+MaskedSpMatmul.CHUNK_SIZE] = dot_prods | |
return torch.sparse_coo_tensor(mask, values, size=(N, K), dtype=values.dtype) | |
@staticmethod | |
def backward(ctx, grad_output): | |
""" | |
grad_output: tensor N x K | |
mask: sparse tensor N x K | |
grad_a = (grad_output * mask).mm(b.t()) : tensor N x M | |
grad_b = a.t().mm(grad_output * mask) : tensor M x K | |
""" | |
a, b, mask = ctx.saved_tensors | |
N, M, K = a.shape[0], a.shape[1], b.shape[1] | |
mask_dense = ( | |
torch.sparse_coo_tensor( | |
mask, torch.ones(mask.shape[1]), size=(N, K), dtype=a.dtype | |
) | |
.to_dense() | |
) | |
grad_a = (grad_output * mask_dense).mm(b.t()) | |
grad_b = a.t().mm(grad_output * mask_dense) | |
return grad_a, grad_b, None | |
class MaskedSpMatmulForTest(MaskedSpMatmul): | |
@staticmethod | |
def forward(ctx, a, b, mask): | |
# torch.autograd.gradcheck can't work with sparse tensors | |
return MaskedSpMatmul.forward(ctx, a, b, mask).to_dense() | |
def test_backward_correctness(): | |
func = MaskedSpMatmulForTest().apply | |
a = torch.randn((50, 30), dtype=torch.float64, requires_grad=True) | |
b = torch.randn((30, 60), dtype=torch.float64, requires_grad=True) | |
mask = torch.randint(30, (2, 15)) | |
torch.autograd.gradcheck(func, (a, b, mask), atol=1e-4) | |
def test_forward_correctness(): | |
N, M, K = 50, 30, 60 | |
nnz = 50 | |
a = torch.randn((N, M), dtype=torch.float32) | |
b = torch.randn((M, K), dtype=torch.float32) | |
mask = torch.randint(min(N, K), (2, nnz)) | |
mask_dense = torch.sparse_coo_tensor( | |
mask, torch.ones(mask.shape[1]), size=(N, K), dtype=torch.float32 | |
).to_dense() | |
expected = torch.mm(a, b) * mask_dense | |
got = MaskedSpMatmulForTest().apply(a, b, mask) | |
assert torch.all(torch.lt(torch.abs(got-expected), 1e-5)) | |
if __name__ == '__main__': | |
test_backward_correctness() | |
test_forward_correctness() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment