Last active
July 26, 2020 05:05
-
-
Save pervognsen/0dbe377a146fec65d3d09c07db40e53b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Tensor product contractions with Einstein's summation notation. Examples: | |
# Matrix-matrix multiply is tensor(A, 'ij', B, 'jk') | |
# Matrix-vector multiply is tensor(A, 'ij', v, 'j') | |
# Matrix trace is tensor(A, 'ii') | |
# Matrix transpose is tensor(A, 'ji') | |
# Matrix diagonal is tensor('i', A, 'ii') | |
# Inner product is tensor(v, 'i', w, 'i') | |
# Outer product is tensor(v, 'i', w, 'j') | |
def tensor(*args, **kwargs): | |
result = '' | |
if isinstance(args[0], str): | |
result, args = '->' + args[0], args[1:] | |
assert len(args) % 2 == 0 | |
return np.einsum(','.join(args[1::2]) + result, *args[::2], **kwargs) | |
# Generate a view of all shifts of a tensor with a given stencil. | |
def shifts(data, stencil, step=1): | |
if isinstance(stencil, int): | |
stencil = [stencil] * len(data.shape) | |
elif isinstance(stencil, np.ndarray): | |
stencil = stencil.shape | |
if isinstance(step, int): | |
step = [step] * len(data.shape) | |
assert len(stencil) == len(data.shape) | |
assert len(step) == len(data.shape) | |
strides = [k * stride for k, stride in zip(step, data.strides)] + list(data.strides) | |
shape = [max(0, (m - n + k) // k) for m, n, k in zip(data.shape, stencil, step)] + list(stencil) | |
return np_as_strided(data, strides=strides, shape=shape) | |
# 1-dimensional convolution | |
def convolve1(signal, kernel): | |
return tensor(shifts(signal, kernel), 'ij', kernel, 'j') | |
# 2-dimensional convolution | |
def convolve2(signal, kernel): | |
return tensor(shifts(signal, kernel), 'ijkl', kernel, 'kl') | |
# Generic n-dimensional convolution | |
def convolve(signal, kernel): | |
subscripts = string.ascii_lowercase | |
n = len(signal.shape) | |
return tensor(shifts(signal, kernel), subscripts[:n*2], kernel, subscripts[n:n*2]) | |
print(convolve1(np.arange(10), np.array([1, 1]))) # [1 3 5 7 9 11 13 15 17] | |
print(convolve(np.arange(10), np.array([1, 1]))) # [1 3 5 7 9 11 13 15 17] | |
print(convolve(np.arange(10), np.array([-1, 1]))) # [1 1 1 1 1 1 1 1 1] | |
print(convolve(np.array([0, -1, 1, 0]), np.array([-1, 1]))) # [-1 2 -1] | |
print(convolve(convolve(np.arange(10), np.array([-1, 1])), np.array([-1, 1]))) # [0 0 0 0 0 0 0 0] | |
print(convolve(np.arange(10), np.array([-1, 2, -1]))) # [0 0 0 0 0 0 0 0] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment