Created
January 8, 2021 17:11
-
-
Save peter-grajcar/11d525b921617e8eaa6f78c2938f609c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
from PIL import Image, ImageDraw, ImageChops | |
import numpy as np | |
import colorsys | |
def distinct_colours(n): | |
return [colorsys.hsv_to_rgb(i / (n - 1), 1, 1) for i in range(n)] | |
def in_bounds(point, bounds): | |
x, y = point | |
w, h = bounds | |
return (0 <= x < w) and (0 <= y < h) | |
def is_dark(colour): | |
return colour < 10 | |
def autocrop(im, bgcolour): | |
bg = Image.new(im.mode, im.size, bgcolour) | |
diff = ImageChops.difference(im, bg) | |
bbox = diff.getbbox() | |
if bbox: | |
return im.crop(bbox) | |
return None | |
img_orig = Image.open("Patient1.jpg") | |
pixels_orig = img_orig.load() | |
arr = np.zeros(shape=img_orig.size, dtype=np.int16) | |
stack = [] | |
idx = 0 | |
for y in range(img_orig.size[1]): | |
for x in range(img_orig.size[0]): | |
if is_dark(pixels_orig[x, y]) or arr[x, y]: | |
continue | |
idx += 1 | |
if idx > 50: | |
break | |
stack.append((x, y)) | |
while stack: | |
i, j = stack.pop() | |
if arr[i, j] or is_dark(pixels_orig[i, j]): | |
continue | |
arr[i, j] = idx | |
stack.extend([(i + ii, j + jj) for ii in range(-1, 2) for jj in range(-1, 2) if in_bounds((i + ii, j + jj), img_orig.size)]) | |
print(idx) | |
colours = [(int(r * 255), int(g * 255), int(b * 255)) for r, g, b in distinct_colours(idx + 1)] | |
chromosomes = [] | |
for val in range(1, idx + 1): | |
indices = np.array((arr == val).nonzero()) | |
min_x, max_x = np.min(indices[0]), np.max(indices[0]) | |
min_y, max_y = np.min(indices[1]), np.max(indices[1]) | |
w, h = max_x - min_x + 1, max_y - min_y + 1 | |
x = indices[0] | |
y = indices[1] | |
A = np.vstack([x, np.ones(len(x))]).T | |
m, c = np.linalg.lstsq(A, y, rcond=None)[0] | |
angle = np.degrees(np.arctan(m)) | |
chromosome = Image.new(img_orig.mode, (w, h), "black") | |
chromosome_pixels = chromosome.load() | |
for i in range(indices.shape[1]): | |
x, y = indices[:,i] | |
chromosome_pixels[int(x - min_x), int(y - min_y)] = pixels_orig[int(x), int(y)] | |
chromosome = autocrop(chromosome.rotate(90 + angle, expand=True, resample=Image.BILINEAR), "black") | |
if chromosome.size[0] > chromosome.size[1]: | |
chromosome = autocrop(chromosome.rotate(90, expand=True), "black") | |
chromosomes.append(chromosome) | |
chromosomes.sort(key=lambda im: -im.size[1]) | |
for val, chromosome in enumerate(chromosomes): | |
chromosome.save(f"chr/chr{val + 1:02d}.png") | |
img = Image.new("RGB", img_orig.size, "black") | |
pixels = img.load() | |
for y in range(img.size[1]): | |
for x in range(img.size[0]): | |
if arr[x, y]: | |
pixels[x, y] = colours[arr[x, y] - 1] | |
img.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment