Skip to content

Instantly share code, notes, and snippets.

@peter-grajcar
Forked from johnmeade/snr.py
Last active March 23, 2025 13:59
Show Gist options
  • Save peter-grajcar/4e4ebd8b700cf3e4e9e3aaff603e8426 to your computer and use it in GitHub Desktop.
Save peter-grajcar/4e4ebd8b700cf3e4e9e3aaff603e8426 to your computer and use it in GitHub Desktop.
WADA SNR Estimation of Speech Signals in Python
#!/usr/bin/env python3
import numpy as np
# next 2 lines define a fancy curve derived from a gamma distribution -- see paper
db_vals = np.arange(-20, 101)
g_vals = np.array([0.40974774, 0.40986926, 0.40998566, 0.40969089, 0.40986186, 0.40999006, 0.41027138, 0.41052627, 0.41101024, 0.41143264, 0.41231718, 0.41337272, 0.41526426, 0.4178192 , 0.42077252, 0.42452799, 0.42918886, 0.43510373, 0.44234195, 0.45161485, 0.46221153, 0.47491647, 0.48883809, 0.50509236, 0.52353709, 0.54372088, 0.56532427, 0.58847532, 0.61346212, 0.63954496, 0.66750818, 0.69583724, 0.72454762, 0.75414799, 0.78323148, 0.81240985, 0.84219775, 0.87166406, 0.90030504, 0.92880418, 0.95655449, 0.9835349 , 1.01047155, 1.0362095 , 1.06136425, 1.08579312, 1.1094819 , 1.13277995, 1.15472826, 1.17627308, 1.19703503, 1.21671694, 1.23535898, 1.25364313, 1.27103891, 1.28718029, 1.30302865, 1.31839527, 1.33294817, 1.34700935, 1.3605727 , 1.37345513, 1.38577122, 1.39733504, 1.40856397, 1.41959619, 1.42983624, 1.43958467, 1.44902176, 1.45804831, 1.46669568, 1.47486938, 1.48269965, 1.49034339, 1.49748214, 1.50435106, 1.51076426, 1.51698915, 1.5229097 , 1.528578 , 1.53389835, 1.5391211 , 1.5439065 , 1.54858517, 1.55310776, 1.55744391, 1.56164927, 1.56566348, 1.56938671, 1.57307767, 1.57654764, 1.57980083, 1.58304129, 1.58602496, 1.58880681, 1.59162477, 1.5941969 , 1.59693155, 1.599446 , 1.60185011, 1.60408668, 1.60627134, 1.60826199, 1.61004547, 1.61192472, 1.61369656, 1.61534074, 1.61688905, 1.61838916, 1.61985374, 1.62135878, 1.62268119, 1.62390423, 1.62513143, 1.62632463, 1.6274027 , 1.62842767, 1.62945532, 1.6303307 , 1.63128026, 1.63204102])
def wada_snr_block(wav, epsilon=1e-10):
"""
Direct blind estimation of the SNR of a speech signal.
Paper on WADA SNR:
http://www.cs.cmu.edu/~robust/Papers/KimSternIS08.pdf
This function was adapted from this matlab code:
https://labrosa.ee.columbia.edu/projects/snreval/#9
"""
# center around 0
wav -= wav.mean()
# enery is calculated before normalisation
energy = (wav**2).sum()
# peak normalise
wav = wav / np.abs(wav).max()
# get magnitude
abs_wav = abs(wav)
# clip lower bound
abs_wav[abs_wav < epsilon] = epsilon
# calcuate statistics
# E[|z|]
v1 = max(epsilon, abs_wav.mean())
# E[log|z|]
v2 = np.log(abs_wav).mean()
# log(E[|z|]) - E[log(|z|)]
v3 = np.log(v1) - v2
# table interpolation
wav_snr_idx = None
if any(g_vals < v3):
wav_snr_idx = np.where(g_vals < v3)[0].max()
# handle edge cases
if wav_snr_idx is None:
wav_snr = db_vals[0]
elif wav_snr_idx == len(db_vals) - 1:
wav_snr = db_vals[-1]
else:
wav_snr = db_vals[wav_snr_idx + 1]
# Calculate SNR
factor = 10 ** (wav_snr / 10)
noise_energy = energy / (1 + factor)
signal_energy = energy * factor / (1 + factor)
return signal_energy, noise_energy
if __name__ == "__main__":
import soundfile as sf
import sys
acc_signal_energy = 0
acc_noise_energy = 0
for block in sf.blocks(sys.argv[1], blocksize=100000):
signal_energy, noise_energy = wada_snr_block(block)
acc_signal_energy += signal_energy
acc_noise_energy += noise_energy
snr = 10 * np.log10(acc_signal_energy / acc_noise_energy)
@SelectLOL1
Copy link

Hello, thank you very much for this! I saw you comment on the original post and was able to see the C++ source code for myself. So if you don't mind, I will be sharing it here again, if someone finds this fork before your comment on the original post.

Source Code from the Paper http://www.cs.cmu.edu/~robust/archive/algorithms/WADA_SNR_IS_2008. This also includes precomputed g_vals for different $\alpha_\textbf{x}$.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment