Created
December 12, 2017 23:41
-
-
Save petered/34d937d90e9bc07990d91787fcccd888 to your computer and use it in GitHub Desktop.
2017-12-12 Kasper EM
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$$ | |
\newcommand{\pderiv}[2]{\frac{\partial #1}{\partial #2}} | |
\newcommand{\pderivsq}[2]{\frac{\partial^2 #1}{\partial #2^2}} | |
\newcommand{\lderiv}[1]{\frac{\partial \mathcal L}{\partial #1}} | |
\newcommand{\pderivgiven}[3]{\left.\frac{\partial #1}{\partial #2}\right|_{#3}} | |
\newcommand{\norm}[1]{\frac12\| #1 \|_2^2} | |
\newcommand{\argmax}[1]{\underset{#1}{\operatorname{argmax}}} | |
\newcommand{\argmin}[1]{\underset{#1}{\operatorname{argmin}}} | |
\newcommand{\blue}[1]{\color{blue}{#1}} | |
\newcommand{\red}[1]{\color{red}{#1}} | |
\newcommand{\numel}[1]{|#1|} | |
\newcommand{\switch}[3]{\begin{cases} #2 & \text{if } {#1} \\ #3 &\text{otherwise}\end{cases}} | |
\newcommand{\pderivdim}[4]{\overset{\big[#3 \times #4 \big]}{\frac{\partial #1}{\partial #2}}} | |
\newcommand{\softmax}{\operatorname{softmax}} | |
\newcommand{\Bern}{\operatorname{Bern}} | |
\newcommand{\Cat}{\operatorname{Cat}} | |
\newcommand{\sigm}{\operatorname{sigm}} | |
\newcommand{\logfrac}[2]{\log \left( \frac{#1}{#2} \right)} | |
$$ | |
We've assumed the following graphical model: | |
 | |
This graph tells us that we can factorize our distribution as: | |
\begin{align} | |
p(X, C, F, ID; \theta)=p(X|C, F;\theta) p(C|ID;\theta) p(ID;\theta) p(F;\theta) | |
\end{align} | |
(Where we use $\theta$ to summarize all model parameters) | |
Now. How do we do EM on such a model? | |
**E-Step** | |
Find "responsibilities": $p(C | X, F, ID; \theta_{old})$ | |
Using Bayes Rule, and looking at the dependencies in our graph, we can rewrite this so that we can directly solve for all the terms. | |
\begin{align} | |
p(C | X, F, ID; \theta_{old}) &= \frac{p(X, C, F, ID; \theta_{old})}{p(X, F, ID;\theta_{old})} \\ | |
&= \frac{p(X, C, F, ID; \theta_{old})}{\sum_{c\in |C|}p(c, X, F, ID;\theta_{old})} \\ | |
&= \frac{p(X|C, F;\theta_{old}) p(C|ID;\theta_{old}) p(ID;\theta_{old}) p(F;\theta_{old})}{\sum_{c\in |C|}p(X|C, F;\theta_{old}) p(C|ID;\theta_{old}) p(ID;\theta_{old}) p(F;\theta_{old})} \\ | |
&:= \gamma(c) | |
\end{align} | |
**M-Step** | |
Maximize parameters: | |
\begin{align} | |
\theta_{new} &\leftarrow \argmax{\theta} \sum_{c \in |C|} p(C=c | X, F, ID; \theta_{old}) p(X, C=c, F, ID; \theta) \\ | |
&=\argmax{\theta} \sum_{c \in |C|} \gamma(c) p(X, C=c, F, ID; \theta) \\ | |
&=\argmax{\theta} \sum_{c \in |C|} \gamma(c) p(X|C=c, F;\theta) p(C=c|ID;\theta) p(ID;\theta) p(F;\theta) | |
\end{align} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment