Created
April 17, 2023 16:30
-
-
Save peterw/9fc317e7d88d4d7cc313deda5381294a to your computer and use it in GitHub Desktop.
embedding the pdf
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import openai | |
import streamlit as st | |
from streamlit_chat import message | |
from dotenv import load_dotenv | |
import os | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
import openai | |
from langchain.document_loaders import UnstructuredMarkdownLoader | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import UnstructuredPDFLoader | |
load_dotenv() | |
openai.api_key = os.environ.get('OPENAI_API_KEY', 'sk-9azBt6Dd8j7p5z5Lwq2S9EhmkVX48GtN2Kt2t3GJGN94SQ2') | |
persist_directory = 'ai_paper1' | |
embeddings = OpenAIEmbeddings() | |
if not os.path.exists(persist_directory): | |
print('embedding the document now') | |
loader = UnstructuredPDFLoader('ai_paper.pdf', mode="elements") | |
pages = loader.load_and_split() | |
vectordb = Chroma.from_documents(documents=pages, embedding=embeddings, persist_directory=persist_directory) | |
vectordb.persist() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment