Last active
January 14, 2019 03:52
-
-
Save peune/3d449309db7ecd0f4ba3842c6a2835ff to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.engine.topology import Layer | |
class RoiPooling(Layer): | |
def __init__(self, pool_size, **kwargs): | |
self.pool_size = pool_size | |
super(RoiPooling, self).__init__(**kwargs) | |
def build(self, input_shape): | |
self.num_channels = input_shape[0][3] | |
self.num_rois = input_shape[1][1] | |
def compute_output_shape(self, input_shape): | |
return None, self.num_rois, self.pool_size, self.pool_size, self.num_channels | |
def call(self, thex, mask=None): | |
featmap = thex[0] | |
roi = thex[1] | |
input_shape = K.shape(featmap) # w,h,c | |
output = [] | |
for i in range(self.num_rois): # for each roi | |
# convert the predicted value | |
x = K.cast(roi[0, i, 0] * K.cast(input_shape[1], 'float32'), 'int32') | |
y = K.cast(roi[0, i, 1] * K.cast(input_shape[2], 'float32'), 'int32') | |
w = K.cast(roi[0, i, 2] * K.cast(input_shape[1], 'float32'), 'int32') | |
h = K.cast(roi[0, i, 3] * K.cast(input_shape[2], 'float32'), 'int32') | |
featroi = tf.image.resize_images(featmap[:, x:x+w, y:y+h, :], (self.pool_size, self.pool_size)) | |
output.append(featroi) | |
final_output = K.concatenate(output, axis=0) | |
final_output = K.reshape(final_output, (-1, self.num_rois, self.pool_size, self.pool_size, self.num_channels)) | |
return final_output | |
# ROI pooling | |
featroi = RoiPooling(14)([x,z]) # we ask it to output subimages | |
roipool = Model(inputs=[x], outputs=[featroi]) | |
roipool.summary() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment