Skip to content

Instantly share code, notes, and snippets.

@peune
Created April 2, 2021 06:47
Show Gist options
  • Save peune/eca24f2294bf9bf0697b59f02fd71733 to your computer and use it in GitHub Desktop.
Save peune/eca24f2294bf9bf0697b59f02fd71733 to your computer and use it in GitHub Desktop.
xmax = 2
d = 1000
X = [i*xmax/d for i in range(d)]
alp = np.linspace(0, 5, 2000)
for t_eta in [2, 5, 10, 50, 100]:
Z = []
for alpha in alp:
lambda_m = (1 - math.sqrt(alpha)) **2
lambda_p = (1 + math.sqrt(alpha)) **2
err = 1./snr
for x in X:
if x == 0:
e = (1+inr)
else:
e = (1+inr)*math.exp(-2*x*t_eta) + (1./(x*snr)) * (1 - math.exp(-2*x*t_eta))**2
p = proba_mp(alpha, x, lambda_m, lambda_p) * e
err = err + p
err = err * var_eps
Z.append(err)
plt.plot(alp, Z, label='t_eta = %d' % t_eta)
plt.legend(loc="upper right")
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment